Abstract:
An electronic device contains electrical components. An electrical component is mounted to an electronic device housing using mounting structures. The mounting structures include a flexible printed circuit jumper having opposing ends with metal contact pads. Metal traces in the flexible printed circuit jumper form contact traces within openings in a solder mask layer. Solder in the openings may be used to connect the metal contact pads to the contact traces. A metal bracket may be screwed into the electronic device housing to mount the electrical component to the electronic device housing. The metal bracket may press the metal contact pads on one end of the jumper against mating contact terminals on the electrical component and may press the metal contacts on the other end of the jumper against mating contact pads on an additional printed circuit.
Abstract:
Electrical components may be shielded using a shielding can or other shielding structure that covers the electrical components. The electrical components and the shielding structure may be mounted on a substrate such as a printed circuit board using solder or other conductive material. The shielding structure may have one or more shielding layers. The shielding layers may include high conductivity material for providing shielding for radio-frequency electromagnetic interference and magnetic material for blocking magnetic flux. Shielding structures may be formed from materials such as ferritic stainless steel, coatings that enhance solderability, corrosion resistance, and conductivity, magnetic materials printed or otherwise formed on metal layers, and other shielding structures.
Abstract:
A method and system for securing a flexible circuit to a mounting structure is disclosed. The system can include a surface-mount device, flexible circuit, stiffener, and bracket. The stiffener is used as an intermediate coupling device between the flexible circuit and bracket. The flexible circuit is coupled to the stiffener with a heat-activated adhesive. Next, the surface-mount device is mounted to the flexible circuit with surface-mounting techniques. A peripheral area of the stiffener is then welded to the bracket. The bracket in turn can be fastened to the enclosure of an electronic device.
Abstract:
The described embodiments relate generally to electronic devices and to three dimensional modules for increasing useable space on a circuit board associated therewith. In some embodiments, the modules can have a cuboid geometry, and can include a number of surfaces having embedded circuit traces configured to interconnect electronic components arranged on various surfaces of the module. One of the surfaces of module can include at least one communication interface configured to interconnect the circuit traces on the module to associated circuit paths on a circuit board to which the module is coupled. In some embodiments the module can be operative as a standoff between the circuit board and another component of the electronic device.
Abstract:
Electronic devices may be provided that include mechanical and electronic components. Connectors may be used to interconnect printed circuits and devices mounted to printed circuits. Printed circuits may include rigid printed circuit boards and flexible printed circuit boards. Heat sinks and other thermally conductive structures may be used to remove excess component heat. Structures may also be provided in an electronic device to detect moisture. Integrated circuits and other circuitry may be mounted on a printed circuit board under a radio-frequency shielding can.
Abstract:
An electronic device may have a printed circuit to which electrical components are mounted. The electrical components may include a thermal sensor and a pressure sensor. A through hole in the printed circuit may receive the shaft of a standoff The standoff may be soldered to plated metal on the sides of the through hole. A screw or other fastener may secure the printed circuit to a housing for the electronic device. A ring-shaped metal member may be soldered to the printed circuit. The ring-shaped metal member may form a bumper that surrounds the screw or other fastener and the thermal sensor. The pressure sensor may have a port through which ambient pressure measurements are made. A dust protection cover such as a fabric or other porous layer may cover the port.
Abstract:
This application relates to securing and positioning internal components within a housing of a portable computing device. In one embodiment a cowling is utilized to retain a number of board-to-board connectors within communication slots on a printed circuit board (PCB). In another embodiment a number of insert molded retaining members are utilized to prevent outward deformation of sidewalls of the portable computing device during a drop event. In another embodiment, a C-shaped washer having diametrically opposed protrusions is utilized to adjust an alignment of an internal component.
Abstract:
Adjustable antenna structures may be used to compensate for manufacturing variations in electronic device antennas. An electronic device antenna may have an antenna feed and conductive structures such as portions of a peripheral conductive electronic device housing member and other conductive antenna structures. The adjustable antenna structures may have a movable dielectric support. Multiple conductive paths may be formed on the dielectric support. The movable dielectric support may be installed within an electronic device housing so that a selected one of the multiple conductive paths is coupled into use to convey antenna signals. Coupling the selected path into use adjusts the position of an antenna feed terminal for the antenna feed and compensates for manufacturing variations in the conductive antenna structures that could potentially lead to undesired variations in antenna performance.
Abstract:
Switch assemblies that mitigate stack up variations and methods of making the same are provided. The stack up variations are mitigated by embodiments that use a floating switch design. The floating switch design may eliminate height variations in the stack up by directly mounting an activation assembly to a support bracket. This ensures that the stack up height of the activation assembly and support bracket remain fixed, independent of a flexible printed circuit board (PCB) that may also be secured to the activation assembly. This way, regardless of the thickness of the flexible PCB and any height variations in solder used to secure the flexible PCB to the activation assembly, the stack up height of the activation assembly and support bracket remains fixed.