Abstract:
A method of forming a stacked surface arrangement for semiconductor devices includes joining a first surface to a second surface with a solder bump, the solder bump including a substantially pure first metal; depositing nanoparticles of a second metal onto a surface of the solder bump; performing an annealing operation to form a film of the second metal on the surface of the solder bump; and performing a reflow or a second annealing operation to transform the solder bump from the substantially pure first metal to an alloy of the first metal and the second metal.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.
Abstract:
Embodiments of the invention include a lead-free solder interconnect structure and methods for making a lead-free interconnect structure. The structure includes a semiconductor substrate having a last metal layer, a copper pedestal attached to the last metal layer, a barrier layer attached to the copper pedestal, a barrier protection layer attached to the barrier layer, and a lead-free solder layer contacting at least one side of the copper pedestal.
Abstract:
A three dimensional multi-die package includes a first die and second die. The first die includes a contact attached to solder. The second die is thinned by adhesively attaching a handler to a top side of the second die and thinning a bottom side of the second die. The second die includes a multilayer contact of layered metallurgy that inhibits transfer of adhesive thereto. The layered metallurgy includes at least one layer that is wettable to the solder. The multilayer contact may include a Nickel layer, a Copper layer upon the Nickel layer, and a Nickel-Iron layer upon the Copper layer. The multilayer contact may also include a Nickel layer, a Copper-Tin layer upon the Nickel layer, and a Tin layer upon the Copper-Tin layer.