Abstract:
Methods of lithographic patterning and structures formed by lithographic patterning. A hardmask layer is formed on a dielectric layer, a feature is formed on the hardmask layer, and a mandrel is formed that extends in a first direction across the first feature. The mandrel and the hardmask layer beneath the mandrel are removed to pattern the hardmask layer with the feature masking a section of the hardmask layer. After the hardmask layer is patterned, the dielectric layer is etched to form a first trench and a second trench that are separated by a section of the dielectric layer masked by the section of the hardmask layer. The first trench and the second trench are filled with a conductor layer to respectively form a first wire and a second wire that is separated from the first wire by the section of the dielectric layer.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of trenches in a layer of insulating material, performing at least one damage-causing process operation to selectively damage portions of the insulating material adjacent the trenches, forming a conductive line in each of the trenches, after forming the conductive lines, performing a selective etching process to selectively remove at least portions of the damaged portions of the insulating material and thereby define an air gap positioned laterally adjacent each of the conductive lines, and forming a capping layer of material above the conductive lines, the air gap and the undamaged portion of the layer of insulating material.
Abstract:
Methods of forming a Co cap on a Cu interconnect in or through an ULK ILD with improved selectivity while protecting an ULK ILD surface are provided. Embodiments include providing a Cu filled via in an ULK ILD; depositing a Co precursor and H2 over the Cu-filled via and the ULK ILD, the Co precursor and H2 forming a Co cap over the Cu-filled via; depositing an UV cured methyl over the Co cap and the ULK ILD; performing an NH3 plasma treatment after depositing the UV cured methyl; and repeating the steps of depositing a Co precursor through performing an NH3 plasma treatment to remove impurities from the Co cap.
Abstract:
Semiconductor structures and fabrication methods are provided having a bridging film which facilitates adherence of both an underlying layer of dielectric material and an overlying stress-inducing layer. The method includes, for instance, providing a layer of dielectric material, with at least one gate structure disposed therein, over a semiconductor substrate; providing a bridging film over the layer of dielectric material with the at least one gate structure; and providing a stress-inducing layer over the bridging film. The bridging film is selected to facilitate adherence of both the underlying layer of dielectric material and the overlying stress-inducing layer by, in part, forming a chemical bond with the layer of dielectric material, without forming a chemical bond with the stress-inducing layer.
Abstract:
A method for flowable oxide deposition is provided. An oxygen source gas is increased as a function of time or film depth to change the flowable oxide properties such that the deposited film is optimized for gap fill near a substrate surface where high aspect ratio shapes are present. The oxygen gas flow rate increases as the film depth increases, such that the deposited film is optimized for planarization quality at the upper regions of the deposited film.
Abstract:
Methods of self-aligned multiple patterning and structures formed by self-aligned multiple patterning. A mandrel line is patterned from a first mandrel layer disposed on a hardmask and a second mandrel layer disposed over the first mandrel layer. A first section of the second mandrel layer of the mandrel line is removed to expose a first section of the first mandrel layer. The first section of the first mandrel layer is masked, and the second sections of the second mandrel layer and the underlying second portions of the first mandrel layer are removed to expose first portions of the hardmask. The first portions of the hardmask are then removed with an etching process to form a trench in the hardmask. A second portion of the hardmask is masked by the first portion of the first mandrel layer during the etching process to form a cut in the trench.
Abstract:
Reducing liner corrosion during metallization of semiconductor devices at BEOL includes providing a starting metallization structure, the structure including a bottom layer of dielectric material with a via therein, a liner lining the via and extending over upper edges thereof, the lined via over filled with a conductive material, recessing the conductive material down to the liner, further selectively recessing the conductive material below the upper edges of the via without damaging the liner, and forming a cap of the liner material on the conductive material.
Abstract:
A method for flowable oxide deposition is provided. An oxygen source gas is increased as a function of time or film depth to change the flowable oxide properties such that the deposited film is optimized for gap fill near a substrate surface where high aspect ratio shapes are present. The oxygen gas flow rate increases as the film depth increases, such that the deposited film is optimized for planarization quality at the upper regions of the deposited film.
Abstract:
Devices and methods for forming semiconductor devices with a protection layer for a dielectric mask layer are provided. One method includes, for instance; obtaining a substrate having at least one of a dielectric layer and a metal layer; forming a first SiCN dielectric mask layer on a top surface of at least one of the dielectric layer and a metal layer; and forming a silicon nitride (SiNx) cap layer on a top surface of the first SiCN dielectric mask layer. One intermediate semiconductor device includes, for instance: a substrate having at least one of a dielectric layer and a metal layer; a first SiCN dielectric mask layer on a top surface of at least one of the dielectric layer and a metal layer; and a silicon nitride (SiNx) cap layer on a top surface of the first SiCN dielectric mask layer.
Abstract:
Circuit structure fabrication methods are provided which include: providing an interlayer structure above a substrate, the interlayer structure including porogens dispersed within a dielectric material; and pulse laser annealing the interlayer structure to form a treated interlayer structure, the pulse laser annealing polymerizing the dielectric material of the interlayer structure to form a polymeric dielectric material, that includes pores disposed therein. The pulse laser annealing facilitates increasing elasticity modulus of the treated interlayer structure by, in part, maintaining structural integrity of the treated interlayer structure, notwithstanding that there are pores disposed within the polymeric dielectric material which, for instance, facilitates reducing dielectric constant of the treated interlayer structure.