Abstract:
Devices and methods for forming semiconductor devices with FinFETs are provided. One method includes, for instance: obtaining an intermediate semiconductor device with a substrate and at least one shallow trench isolation region; depositing a hard mask layer over the intermediate semiconductor device; etching the hard mask layer to form at least one fin hard mask; and depositing at least one sacrificial gate structure over the at least one fin hard mask and at least a portion of the substrate. One intermediate semiconductor device includes, for instance: a substrate with at least one shallow trench isolation region; at least one fin hard mask over the substrate; at least one sacrificial gate structure over the at least one fin hard mask; at least one spacer disposed on the at least one sacrificial gate structure; and at least one pFET region and at least one nFET region grown into the substrate.
Abstract:
A method of forming self-aligned STI regions extending over portions of a Si substrate to enable the subsequent formation of epitaxially grown embedded S/D regions without using a lithography mask and the resulting device are provided. Embodiments include forming a STI etch mask with laterally separated openings over a Si substrate; forming shallow trenches into the Si substrate through the openings; forming first through fourth oxide spacers on opposite sidewalls of the shallow trenches and the openings; forming a deep STI trench between the first and second oxide spacers and between the third and fourth oxide spacers down into the Si substrate; forming a STI oxide layer over the first through fourth oxide spacers and a portion of the STI etch mask, the STI oxide layer filling the deep STI trenches; and planarizing the STI oxide layer down to the portion of the STI etch mask.
Abstract:
A method of forming a nanowire device includes patterning a plurality of semiconductor material layers such that each layer has first and second exposed end surfaces. The method further includes forming doped extension regions in the first and second exposed end surfaces of the semiconductor material layers. The method further includes, after forming the doped extension regions, forming epi semiconductor material in source and drain regions of the device.
Abstract:
A method of forming a nanowire device includes forming semiconductor material layers above a semiconductor substrate, forming a gate structure above the semiconductor material layers, forming a first sidewall spacer adjacent to the gate structure and forming a second sidewall spacer adjacent to the first sidewall spacer. The method further includes patterning the semiconductor material layers such that each layer has first and second exposed end surfaces. The gate structure, the first sidewall spacer, and the second sidewall spacer are used in combination as an etch mask during the patterning process. The method further includes removing the first and second sidewall spacers, thereby exposing at least a portion of the patterned semiconductor material layers. The method further includes forming doped extension regions in at least the exposed portions of the patterned semiconductor material layers after removing the first and second sidewall spacers.
Abstract:
A method includes providing a gate structure having a gate, a first spacer along at least one side of the gate and an interlayer dielectric on at least one of the gate and the first spacer. The interlayer dielectric is removed to reveal the first spacer. The first spacer is removed and a second spacer is deposited on at least one side of the gate. The second spacer is formed of material having a lower dielectric constant than the first spacer.
Abstract:
Approaches for isolating source and drain regions in an integrated circuit (IC) device (e.g., a metal-oxide-semiconductor field-effect transistor (MOSFET)) are provided. Specifically, the device comprises a gate structure formed over a substrate, a source and drain (S/D) embedded within the substrate adjacent the gate structure, and a liner layer (e.g., silicon-carbon) between the S/D and the substrate. In one approach, the liner layer is formed atop the S/D as well. As such, the liner layer formed in the junction prevents dopant diffusion from the source/drain.
Abstract:
An improved semiconductor structure and methods of fabrication that provide improved transistor contacts in a semiconductor structure are provided. A set of masks is formed over a portion of the semiconductor structure. Each mask in this set of masks covers at least one source/drain (s/d) contact location. An oxide layer is removed from remainder portions of the semiconductor structure that are not covered by the set of masks. Then an opposite-mask fill layer is formed in the remainder portions from which the oxide layer was removed. The oxide layer is then removed from the remainder of the semiconductor structure, i.e., the portion previously covered by the set of masks and contacts are formed to the at least s/d contact location in the recesses formed by the removal of the remainder of the oxide layer.
Abstract:
Integrated circuits and methods for producing the same are provided. A method for producing an integrated circuit includes forming a layered fin overlying a substrate, where the layered fin includes an SiGe layer and an Si layer. The SiGe layer and the Si layer alternate along a height of the layered fin. A dummy gate is formed overlying the substrate and the layered fin, and a source and a drain area formed in contact with the layered fin. The dummy gate is removed to expose the SiGe layer and the Si layer, and the Si layer is removed to produce an SiGe nanowire. A high K dielectric layer that encases the SiGe nanowire between the source and the drain is formed, and a replacement metal gate is formed so that the replacement metal gate encases the high K dielectric layer and the SiGe nanowire between the source and drain.
Abstract:
A method of forming a nanowire device includes patterning a plurality of semiconductor material layers such that each layer has first and second exposed end surfaces. The method further includes forming doped extension regions in the first and second exposed end surfaces of the semiconductor material layers. The method further includes, after forming the doped extension regions, forming epi semiconductor material in source and drain regions of the device.
Abstract:
A device includes a gate structure and a nanowire channel structure positioned under the gate structure. The nanowire channel structure includes first and second end surfaces. The device further includes a first insulating liner positioned on the first end surface and a second insulating liner positioned on the second end surface. The device further includes a metal-containing source contact positioned on the first insulating liner and a metal-containing drain contact positioned on the second insulating liner.