Abstract:
A method for fabricating a heat sink including providing a carbon metal composite having a plurality of metal-coated carbon fibers and a plurality of openings, the openings leading from a first side of the carbon metal composite to a second side of the carbon metal composite, disposing the carbon metal composite over a semiconductor element such that the first side of the carbon metal composite faces the semiconductor element, and bonding the carbon metal composite to the semiconductor element by means of an electroplating process, wherein a metal electrolyte is supplied to an interface between the carbon metal composite and the semiconductor element via the plurality of openings.
Abstract:
A method of treating an acid effluent including phosphoric acid in accordance with various embodiments may include: providing an acid effluent including phosphoric acid; adding a base and silicon particles from a further effluent to the acid effluent including phosphoric acid so that a mixture is obtained and a solid content is formed; separating from the mixture a solid content including silicon and a salt resulting from a reaction of the base with the acid, so that a clarified effluent can be rejected in the environment and a filter press cake can be obtained and further used as additive for concrete.
Abstract:
A method of removing particulate silicon from an effluent water in accordance with various embodiments may include: adding a base to the effluent water, an amount of the added base being sub-stoichiometric with regard to a basic oxidation reaction of an entire amount of silicon contained in the effluent water to ortho-silicic acid or ortho-silicate ions; maintaining a resulting mixture of the effluent water and the base in a predetermined temperature range for a period of time, so that a sediment including silicon is formed; and separating the sediment and the effluent water from each other.
Abstract:
In various embodiments, a gamma ray detector is provided. The gamma ray detector may include a converter element, configured to release an electron when a gamma ray moves at least partially through the converter element. The gamma ray detector may further include a semiconductor detector, arranged to receive the electron and configured to produce a signal when the electron moves at least partially through the semiconductor detector; and an amplifier circuit, coupled to the semiconductor detector and configured to amplify the signal produced by the semiconductor detector. In the gamma ray detector, the converter element may be arranged to at least partially shield the amplifier circuit from electromagnetic radiation.
Abstract:
A preform structure for soldering a semiconductor chip arrangement includes a carbon fiber composite sheet and a solder layer formed over the carbon fiber composite sheet.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
A method of forming a composite material is provided. The method may include: arranging a suspension in physical contact with a carrier, wherein the suspension may comprise an electrolyte and a plurality of particles of a first component of the composite material; causing the particles of the first component of the composite material to sediment on the carrier, wherein a plurality of spaces may be formed between the sedimented particles; and forming by electroplating a second component of the composite material from the electrolyte in at least a fraction of the plurality of spaces.
Abstract:
A method for producing a semiconductor is disclosed, the method having: providing a semiconductor body having a first side and a second side; forming an n-doped zone in the semiconductor body by a first implantation into the semiconductor body via the first side to a first depth location of the semiconductor body; and forming a p-doped zone in the semiconductor body by a second implantation into the semiconductor body via the second side to a second depth location of the semiconductor body, a pn-junction forming between said n-doped zone and said p-doped zone in the semiconductor body.
Abstract:
A method of treating an acid effluent including phosphoric acid in accordance with various embodiments may include: providing an acid effluent including phosphoric acid; adding a base and silicon particles from a further effluent to the acid effluent including phosphoric acid so that a mixture is obtained and a solid content is formed; separating from the mixture a solid content including silicon and a salt resulting from a reaction of the base with the acid, so that a clarified effluent can be rejected in the environment and a filter press cake can be obtained and further used as additive for concrete.
Abstract:
A battery includes a plurality of battery cells encapsulated by an encapsulation structure. The battery also includes an embedding structure separating neighboring ones of the battery cells. An embedding material of at least a part of the embedding structure is arranged between the neighboring battery cells. A shear strength of the embedding material is less than 30% of a shear strength of an encapsulation material of at least a part of the encapsulation structure.