Abstract:
Described herein are apparatuses, systems, and methods associated with metal-assisted transistors. A single crystal semiconductor material may be seeded from a metal. The single crystal semiconductor material may form a channel region, a source, region, and/or a drain region of the transistor. The metal may form the source contact or drain contact, and the source region, channel region, and drain region may be stacked vertically on the source contact or drain contact. Alternatively, a metal-assisted semiconductor growth process may be used to form a single crystal semiconductor material on a dielectric material adjacent to the metal. The portion of the semiconductor material on the dielectric material may be used to form the transistor. Other embodiments may be described and claimed.
Abstract:
Embodiments herein describe techniques for a semiconductor device, which may include a substrate, and a U-shaped channel above the substrate. The U-shaped channel may include a channel bottom, a first channel wall and a second channel wall parallel to each other, a source area, and a drain area. A gate dielectric layer may be above the substrate and in contact with the channel bottom. A gate electrode may be above the substrate and in contact with the gate dielectric layer. A source electrode may be coupled to the source area, and a drain electrode may be coupled to the drain area. Other embodiments may be described and/or claimed.
Abstract:
Embedded non-volatile memory structures having selector elements with ballast are described. In an example, a memory device includes a word line. A selector element is above the word line. The selector element includes a selector material layer and a ballast material layer different than the selector material layer. A bipolar memory element is above the word line. A conductive electrode is between the elector element and the bipolar memory element. A bit line is above the word line.
Abstract:
A programmable array including a plurality of cells aligned in a row on a substrate, wherein each of the plurality of cells includes a programmable element and a transistor, the transistor including a body including a first diffusion region and a second diffusion region on the first diffusion region and separated by a channel and the programmable element is disposed on the second diffusion region and includes a width dimension equivalent to a width dimension of the body of the transistor. A method of forming an integrated circuit including forming bodies in a plurality rows on a substrate, each of the bodies including a programmable element and a first diffusion region, a second diffusion region and a channel of a transistor; forming a masking material as a plurality of rows across the bodies; etching the bodies through the masking material; and replacing the masking material with an address line material.
Abstract:
A subfin layer is deposited in a trench in an insulating layer on the substrate. A fin is deposited on the subfin layer. The fin has a top portion and opposing sidewalls. The fin comprises a first semiconductor material. The subfin layer comprises a III-V semiconductor material.
Abstract:
Transistors suitable for high voltage and high frequency operation. A nanowire is disposed vertically or horizontally on a substrate. A longitudinal length of the nanowire is defined into a channel region of a first semiconductor material, a source region electrically coupled with a first end of the channel region, a drain region electrically coupled with a second end of the channel region, and an extrinsic drain region disposed between the channel region and drain region. The extrinsic drain region has a wider bandgap than that of the first semiconductor. A gate stack including a gate conductor and a gate insulator coaxially wraps completely around the channel region, drain and source contacts similarly coaxially wrap completely around the drain and source regions.
Abstract:
Aspect ratio trapping (ART) approaches for fabricating vertical semiconductor devices and vertical semiconductor devices fabricated there from are described. For example, a semiconductor device includes a substrate with an uppermost surface having a first lattice constant. A first source/drain region is disposed on the uppermost surface of the substrate and has a second, different, lattice constant. A vertical channel region is disposed on the first source/drain region. A second source/drain region is disposed on the vertical channel region. A gate stack is disposed on and completely surrounds a portion of the vertical channel region.
Abstract:
Embodiments relate to an improved tri-gate device having gate metal fills, providing compressive or tensile stress upon at least a portion of the tri-gate transistor, thereby increasing the carrier mobility and operating frequency. Embodiments also contemplate method for use of the improved tri-gate device.
Abstract:
A flexible electronic computing device is described. In one embodiment, a flexible display is formed on a flexible substrate. A plurality of electronic components are attached to the flexible substrate. A plurality of conductive signal lines are formed on the flexible substrate, the signal lines electrically coupling the electronic components to the flexible display.
Abstract:
A single fin or a pair of co-integrated n- and p-type single crystal electronic device fins are epitaxially grown from a substrate surface at a bottom of one or a pair of trenches formed between shallow trench isolation (STI) regions. The fin or fins are patterned and the STI regions are etched to form a height of the fin or fins extending above etched top surfaces of the STI regions. The fin heights may be at least 1.5 times their width. The exposed sidewall surfaces and a top surface of each fin is epitaxially clad with one or more conformal epitaxial materials to form device layers on the fin. Prior to growing the fins, a blanket buffer epitaxial material may be grown from the substrate surface; and the fins grown in STI trenches formed above the blanket layer. Such formation of fins reduces defects from material interface lattice mismatches.