Abstract:
A package includes a die having a conductive pad at a top surface of the die, a stud bump over and connected to the conductive pad, and a redistribution line over and connected to the stud bump. An electrical connector is over and electrically coupled to the redistribution line.
Abstract:
A method includes molding a polymer onto a package component. The step of molding includes a first molding stage performed at a first temperature, and a second molding stage performed at a second temperature different from the first temperature.
Abstract:
Methods of packaging semiconductor devices and structures thereof are disclosed. In one embodiment, a method of packaging a semiconductor device includes providing a carrier wafer, providing a plurality of dies, and forming a die cave material over the carrier wafer. A plurality of die caves is formed in the die cave material. At least one of the plurality of dies is placed within each of the plurality of die caves in the die cave material. A plurality of packages is formed, each of the plurality of packages being formed over a respective at least one of the plurality of dies.
Abstract:
A wafer level package includes a semiconductor die bonded on a supporting wafer. The semiconductor die has at least a step recess at its substrate. An underfill layer is formed between the semiconductor die and the supporting wafer. Moreover, the height of the underfill layer is limited by the step recess. During a fabrication process of the wafer level package, the step recess helps to reduce the stress on the wafer level package.
Abstract:
The embodiments of mechanisms of wafer-level packaging (WLP) described above utilize a planarization stop layer to determine an end-point of the removal of excess molding compound prior to formation of redistribution lines (RDLs). Such mechanisms of WLP are used to implement fan-out and multi-chip packaging. The mechanisms are also usable to manufacture a package including chips (or dies) with different types of external connections. For example, a die with pre-formed bumps can be packaged with a die without pre-formed bumps.
Abstract:
A device includes a bottom chip and an active top die bonded to the bottom chip. A dummy die is attached to the bottom chip. The dummy die is electrically insulated from the bottom chip.
Abstract:
A method for performing grinding includes selecting a target wheel loading for wafer grinding processes, and performing a grinding process on a wafer. With the proceeding of the grinding process, wheel loadings of the grinding process are measured. The grinding process is stopped after the target wheel loading is reached. The method alternatively includes selecting a target reflectivity of wafer grinding processes, and performing a grinding process on a wafer. With a proceeding of the grinding process, reflectivities of a light reflected from a surface of the wafer are measured. The grinding process is stopped after one of the reflectivities reaches the target reflectivity.
Abstract:
A method for performing grinding includes selecting a target wheel loading for wafer grinding processes, and performing a grinding process on a wafer. With the proceeding of the grinding process, wheel loadings of the grinding process are measured. The grinding process is stopped after the target wheel loading is reached. The method alternatively includes selecting a target reflectivity of wafer grinding processes, and performing a grinding process on a wafer. With a proceeding of the grinding process, reflectivities of a light reflected from a surface of the wafer are measured. The grinding process is stopped after one of the reflectivities reaches the target reflectivity.
Abstract:
Methods of packaging semiconductor devices are disclosed. In one embodiment, a packaging method for semiconductor devices includes providing a workpiece including a plurality of first dies, and coupling a plurality of second dies to the plurality of first dies. The plurality of second dies and the plurality of first dies are partially packaged and separated. Top surfaces of the second dies are coupled to a carrier, and the partially packaged plurality of second dies and plurality of first dies are fully packaged. The carrier is removed, and the fully packaged plurality of second dies and plurality of first dies are separated.
Abstract:
An embodiment is a molding chamber. The molding chamber comprises a mold-conforming chase, a substrate-base chase, a first radiation permissive component, and a microwave generator coupled to a first waveguide. The mold-conforming chase is over the substrate-base chase, and the mold-conforming chase is moveable in relation to the substrate-base chase. The first radiation permissive component is in one of the mold-conforming chase or the substrate-base chase. The microwave generator and the first waveguide are together operable to direct microwave radiation through the first radiation permissive component.