Abstract:
Microelectronic devices and methods for manufacturing such devices are disclosed herein. In one embodiment, a packaged microelectronic device can include an interposer substrate with a plurality of interposer contacts. A microelectronic die is attached and electrically coupled to the interposer substrate. The device further includes a casing covering the die and at least a portion of the interposer substrate. A plurality of electrically conductive through-casing interconnects are in contact with and projecting from corresponding interposer contacts at a first side of the interposer substrate. The through-casing interconnects extend through the thickness of the casing to a terminus at the top of the casing. The through-casing interconnects comprise a plurality of filaments attached to and projecting away from the interposer contacts in a direction generally normal to the first side of the interposer substrate.
Abstract:
Various embodiments of semiconductor assemblies with multi-level substrates and associated methods of manufacturing are described below. In one embodiment, a substrate for carrying a semiconductor die includes a first routing level, a second routing level, and a conductive via between the first and second routing levels. The conductive via has a first end proximate the first routing level and a second end proximate the second routing level. The first routing level includes a terminal and a first trace between the terminal and the first end of the conductive via. The second routing level includes a second trace between the second end of the conductive via and a ball site. The terminal of the first routing level and the ball site of the second routing level are both accessible for electrical connections from the same side of the substrate.
Abstract:
Microelectronic devices, stacked microelectronic devices, and methods for manufacturing microelectronic devices are described herein. In one embodiment, a set of stacked microelectronic devices includes (a) a first microelectronic die having a first side and a second side opposite the first side, (b) a first substrate attached to the first side of the first microelectronic die and electrically coupled to the first microelectronic die, (c) a second substrate attached to the second side of the first microelectronic die, (d) a plurality of electrical couplers attached to the second substrate, (e) a third substrate coupled to the electrical couplers, and (f) a second microelectronic die attached to the third substrate. The electrical couplers are positioned such that at least some of the electrical couplers are inboard the first microelectronic die.
Abstract:
A device is disclosed which includes a first packaged integrated circuit device, a second packaged integrated circuit device positioned above the first packaged integrated circuit device and a plurality of planar conductive members conductively coupling the first and second packaged integrated circuit devices to one another. A method is also disclosed which includes conductively coupling a plurality of extensions on a leadframe to each of a pair of stacked packaged integrated circuit devices and cutting the leadframe to singulate the extensions from one another.
Abstract:
A semiconductor package including a package substrate with an upper surface, a controller, and a die stack. The controller and the die stack are at the upper surface. The die stack includes a shingled sub-stack of semiconductor dies, a reverse-shingled sub-stack of semiconductor dies, and a bridging chip. The bridging chip is bonded between the shingled sub-stack and the reverse-shingled sub-stack, and has an internal trace. A first wire segment is bonded between the controller and a first end of the bridging chip, and a second wire segment is bonded between a second end of the bridging chip and each semiconductor die of the shingled sub-stack. The internal trace electrically couples the first and second wire segments. Additionally, a third wire segment is bonded between the controller and each semiconductor die of the reverse-shingled sub-stack.
Abstract:
Modular systems in packages, and associated devices, systems, and methods, are disclosed herein. In one embodiment, a system comprises a main module package and an upper module package. The main module package includes a first substrate and a first electronic device mounted on a first side of the first substrate. The upper module package includes a second substrate and one or more second electronic devices mounted on a first side of the second substrate. The second substrate includes a cavity at a second side of the second substrate opposite the first side, and the upper module package is mountable on the first side of the first substrate of the main module package such that the first electronic device is positioned within the cavity and the second substrate generally surrounds at least a portion of a perimeter of the first electronic device.
Abstract:
A semiconductor device assembly is provided. The assembly includes an outer semiconductor device which has an active surface and a back surface. The back surface includes a cut that extends to a depth between the active surface and the back surface, and uncut regions on opposing sides of the cut. The assembly further includes an inner semiconductor device disposed within the cut of the outer semiconductor device.
Abstract:
Semiconductor devices with three-dimensional trace matching features, and related systems and methods, are disclosed herein. In some embodiments, an exemplary semiconductor device includes at least one semiconductor die and a redistribution layer disposed over the at least one semiconductor die and extending across a longitudinal plane. The redistribution layer includes first and second traces each electrically coupled to the at least one semiconductor die. The first trace is disposed in a first travel path included in a first effective path length. The second trace is disposed in a second travel path different from the first travel path. The second the second travel path includes at least one segment at a non-right, non-zero angle such that the at least one segment is neither parallel nor perpendicular to the longitudinal plane. Further, the second travel path is included in a second effective path length equal to the first path length.
Abstract:
An apparatus includes a primary layer of a substrate that includes an open area that extends through the primary layer to an inner layer of the substrate. The apparatus includes a secondary layer of the substrate. The apparatus also includes the inner layer of the substrate that is positioned between the primary layer and the secondary layer. The inner layer includes component bond pads that are disposed on the inner layer and that are exposed via the open area of the primary layer.
Abstract:
Substrates for semiconductor packages, including hybrid substrates for decoupling capacitors, and associated devices, systems, and methods are disclosed herein. In one embodiment, a substrate includes a first pair and a second pair of electrical contacts on a first surface of the substrate. The first pair of electrical contacts can be configured to receive a first surface-mount capacitor, and the second pair of electrical contacts can be configured to receive a second surface-mount capacitor. The first pair of electrical contacts can be spaced apart by a first space, and the second pair of electrical contacts can be spaced apart by a second space. The first and second spaces can correspond to first and second distances between electrical contacts of the first and second surface-mount capacitors.