Abstract:
A semiconductor device includes a plurality of patterns defined between a plurality of trenches and disposed on a substrate. A leaning control layer is disposed on sidewalls and bottoms of the plurality of trenches. A gap-fill insulating layer is disposed on the leaning control layer. At least one of the plurality of trenches has a different depth from one of the plurality of trenches adjacent thereto.
Abstract:
A semiconductor device includes a plurality of patterns defined between a plurality of trenches and disposed on a substrate. A leaning control layer is disposed on sidewalls and bottoms of the plurality of trenches. A gap-fill insulating layer is disposed on the leaning control layer. At least one of the plurality of trenches has a different depth from one of the plurality of trenches adjacent thereto.
Abstract:
A semiconductor device includes gate electrodes stacked and spaced apart from each other in a first direction perpendicular to an upper surface of a substrate; interlayer insulating layers alternately stacked with the gate electrodes on the substrate; channel structures extending through the gate electrodes; and a separation region extending through the gate electrodes in the first direction and extending in a second direction perpendicular to the first direction, wherein each of the gate electrodes comprises a first conductive layer and a second conductive layer sequentially stacked, the second conductive layer including a metal nitride, and wherein the first conductive layer and the second conductive layer are each in physical contact with the separation region.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A semiconductor device includes a substrate, a first insulation layer formed on the substrate in a first region, a photon absorption seed layer formed on the first insulation layer in the first region and on the substrate in a second region separate from the first region, and a photon absorption layer formed on the photon absorption seed layer in the first region. The photon absorption seed layer has a particular structure that may assist in reducing dislocation density in a region that includes a photon absorption layer.
Abstract:
A semiconductor device includes gate electrodes stacked and spaced apart from each other in a first direction perpendicular to an upper surface of a substrate; interlayer insulating layers alternately stacked with the gate electrodes on the substrate; channel structures extending through the gate electrodes; and a separation region extending through the gate electrodes in the first direction and extending in a second direction perpendicular to the first direction, wherein each of the gate electrodes comprises a first conductive layer and a second conductive layer sequentially stacked, the second conductive layer including a metal nitride, and wherein the first conductive layer and the second conductive layer are each in physical contact with the separation region.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
A memory device includes a plurality of channel regions that each extend in a direction perpendicular to an upper surface of a substrate, a plurality of gate electrode layers and a plurality of insulating layers stacked on the substrate adjacent the channel regions, each of the gate electrodes extending different lengths, and a plurality of dummy channel regions adjacent first ends of the plurality of gate electrode layers, wherein the substrate includes a substrate insulating layer formed below the plurality of dummy channel regions.
Abstract:
Three-dimensional semiconductor memory devices and methods of fabricating the same. The three-dimensional semiconductor devices include an electrode structure with sequentially-stacked electrodes disposed on a substrate, semiconductor patterns penetrating the electrode structure, and memory elements including a first pattern and a second pattern interposed between the semiconductor patterns and the electrode structure, the first pattern vertically extending to cross the electrodes and the second pattern horizontally extending to cross the semiconductor patterns.
Abstract:
Provided are a semiconductor device and a method of fabricating the same. The semiconductor device may include a plurality of unit cells provided on a semiconductor substrate. Each of the unit cells may include a buried insulating pattern buried in the semiconductor substrate, a first active pattern provided on the buried insulating pattern, and a second active pattern provided on the buried insulating pattern and spaced apart from the first active pattern. The buried insulating pattern may define a unit cell region, in which each of the unit cells may be disposed.