Abstract:
The present invention relates to a substrate inspection apparatus for inspecting a pattern formed on a substrate by irradiating a charged particle beam onto the substrate. The substrate inspection apparatus comprises: an electron beam apparatus including a charged particle beam source for emitting a charged particle beam, a primary optical system for irradiating the charged particle beam onto the substrate, a secondary optical system into which a secondary charged particle beam is introduced, the secondary charged particle beam being emitted from the substrate by an irradiation of the charged particle beam, a detection system for detecting the secondary charged particle beam introduced into said secondary optical system and outputting as an electric signal, and a process control system for processing and evaluating the electric signal; a stage unit for holding the substrate and moving the substrate relatively to said electron beam apparatus; a working chamber capable of shielding at least an upper region of the stage unit form outside to control under desired atmosphere; and a substrate load-unload mechanism for transferring the substrate into or out of the stage.
Abstract:
A system for further enhancing speed, i.e. improving throughput in a SEM-type inspection apparatus is provided. An inspection apparatus for inspecting a surface of a substrate produces a crossover from electrons emitted from an electron beam source 25•1, then forms an image under a desired magnification in the direction of a sample W to produce a crossover. When the crossover is passed, electrons as noises are removed from the crossover with an aperture, an adjustment is made so that the crossover becomes a parallel electron beam to irradiate the substrate in a desired sectional form. The electron beam is produced such that the unevenness of illuminance is 10% or less. Electrons emitted from the sample W are detected by a detector 25•11.
Abstract:
An electron beam apparatus is provided for reliably measuring a potential contrast and the like at a high throughput in a simple structure. The electron beam apparatus for irradiating a sample, such as a wafer, formed with a pattern with an electron beam to evaluate the sample comprises an electron-optical column for accommodating an electron beam source, an objective lens, an ExB separator, and a secondary electron beam detector; a stage for holding the sample, and relatively moving the sample with respect to the electron-optical column; a working chamber for accommodating the stage and capable of controlling the interior thereof in a vacuum atmosphere; a loader for supplying a sample to the stage; a voltage applying mechanism for applying a voltage to the sample, and capable of applying at least two voltages to a lower electrode of the objective lens; and an alignment mechanism for measuring a direction in which dies are arranged on the sample. When the sample is evaluated, a direction in which the stage is moved is corrected to align with the direction in which the dies are arranged.
Abstract:
A light power controlling apparatus contains a semiconductor laser and a photosensor for receiving part of light emitted from the semiconductor laser to produce a corresponding electrical signal. The semiconductor laser is connected to first and second current circuits. The first current circuit averages a voltage signal based on the electrical signal of the photosensor by a first low-pass filter, thereby to have a detected voltage. The detected voltage is compared with a desired voltage by an error amplifier. The error amplifier produces a signal representing a difference between the detected voltage and the desired voltage. The difference signal is integrated by an integrator. According to the integrated signal, the first current circuit supplies a forward current to the semiconductor laser. The second current circuit is set at a peak power value in a modulating mode according to a voltage signal of a peak power setting member. The second current circuit supplies to the semiconductor laser a forward current according to a modulating signal, with superposing on the forward current of the first current circuit. The modulating signal is averaged by a second low pass filter. A voltage representing the product of the averaged value and the peak power value is added to the desired value. The sum voltage is then supplied to the error amplifier where it is compared with the detected voltage.
Abstract:
In a system for detecting defects on an optical surface, a disk to be inspected is mounted on a turntable, and is attracted on the surface of the turntable. On the disk is provided an optical head having an objective lens located at its focal point on the surface of the disk. A laser beam emitted from a laser unit is projected through the optical head onto the disk, is reflected on the disk, and is then directed through the optical head to a photo detector. The optical head is moved in the radial direction of the disk as the turntable is rotated, and the disk is helically scanned by the laser beam. Only a defect signal is extracted from an electrical signal generated from the photo detector in a defect signal generator. The defect signal is compared in a data processing unit, and is converted to defect information of different size. When it is judged that a prescribed region on the surface of the disk is scanned by a position signal from a position sensor for detecting the position of the optical head, the data processing unit generates an address, and the defect information is stored in each size in specific assigned locations of the RAM. The defect information thus stored is displayed on a CRT or is printed out by a printer.
Abstract:
A disc drive apparatus for driving a disc selected from discs of various diameters with and without a central hole comprises: a turntable with a hole at the center of rotation thereof; a turntable support for rotatably supporting the turntable; a motor for driving the turntable; a centering member to be detachably inserted in the hole of the turntable and for mounting a disc with a central hole; a plurality of elastic disc support members which are coaxial with the center of rotation of the turntable, which extend from the surface of the turntable, and which form a plurality of annular shapes; centering index marks, disposed on the turntable, for centering a disc without a central hole; a vacuum pump; and suction channels, one end of which is open to the surface of the turntable and the other end of which is connected to the vacuum pump, for fixing on some of the disc support members the disc selected from discs of various diameters with and without a central hole and placed on some of said disc support members.
Abstract:
An inspection device for inspecting a surface of an inspection object using a beam includes a beam generator capable of generating one of either charge particles or an electromagnetic wave as a beam, a primary optical system capable of guiding and irradiating the beam to the inspection object supported within a working chamber, a secondary optical system capable of including a first movable numerical aperture and a first detector which detects secondary charge particles generated from the inspection object, the secondary charge particles passing through the first movable numerical aperture, an image processing system capable of forming an image based on the secondary charge particles detected by the first detector; and a second detector arranged between the first movable numerical aperture and the first detector and which detects a location and shape at a cross over location of the secondary charge particles generated from the inspection object.
Abstract:
An inspecting apparatus for reducing a time loss associated with a work for changing a detector is characterized by comprising a plurality of detectors 11, 12 for receiving an electron beam emitted from a sample W to capture image data representative of the sample W, and a switching mechanism M for causing the electron beam to be incident on one of the plurality of detectors 11, 12, where the plurality of detectors 11, 12 are disposed in the same chamber MC. The plurality of detectors 11, 12 can be an arbitrary combination of a detector comprising an electron sensor for converting an electron beam into an electric signal with a detector comprising an optical sensor for converting an electron beam into light and converting the light into an electric signal. The switching mechanism M may be a mechanical moving mechanism or an electron beam deflector.
Abstract:
An inspecting apparatus for reducing a time loss associated with a work for changing a detector is characterized by comprising a plurality of detectors 11, 12 for receiving an electron beam emitted from a sample W to capture image data representative of the sample W, and a switching mechanism M for causing the electron beam to be incident on one of the plurality of detectors 11, 12, where the plurality of detectors 11, 12 are disposed in the same chamber MC. The plurality of detectors 11, 12 can be an arbitrary combination of a detector comprising an electron sensor for converting an electron beam into an electric signal with a detector comprising an optical sensor for converting an electron beam into light and converting the light into an electric signal. The switching mechanism M may be a mechanical moving mechanism or an electron beam deflector.
Abstract:
The present invention provides an electron beam apparatus for irradiating a sample with primary electron beams to detect secondary electron beams generated from a surface of the sample by the irradiation for evaluating the sample surface. In the electron beam apparatus, an electron gun has a cathode for emitting primary electron beams. The cathode includes a plurality of emitters for emitting primary electron beams, arranged apart from one another on a circle centered at an optical axis of a primary electro-optical system. The plurality of emitters are arranged such that when the plurality of emitters are projected onto a straight line parallel with a direction in which the primary electron beams are scanned, resulting points on the straight line are spaced at equal intervals.