Abstract:
An electronic package is provided, including: a substrate having opposite first and second surfaces; at least a first electronic element disposed on the first surface of the substrate; a first encapsulant encapsulating the first electronic element; at least a second electronic element and a frame disposed on the second surface of the substrate; and a second encapsulant encapsulating the second electronic element. By disposing the first and second electronic elements on the first and second surfaces of the substrate, respectively, the invention allows a required number of electronic elements to be mounted on the substrate without the need to increase the surface area of the substrate. Since the volume of the electronic package does not increase, the electronic package meets the miniaturization requirement. The present invention further provides a method for fabricating the electronic package.
Abstract:
The disclosure provides a method for manufacturing an electronic package structure, including disposing on a carrier an electronic component and a conductive frame including a plurality of conductive pads and supporting parts; and covering the electronic component and the supporting parts of the conductive frame with an encapsulating layer while allowing the conductive pads to be exposed from the encapsulating layer, thereby increasing the efficiency and reducing the cost of manufacturing processes with the design of the conductive frame. The disclosure further provides the electronic package structure as described above.
Abstract:
A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
Abstract:
A semiconductor package is provided, including: a substrate having opposing first and second surfaces; a plurality of semiconductor components disposed on and electrically connected to the first surface; an encapsulant encapsulating the first surface and the semiconductor components and having at least one first groove that partitions the substrate into a plurality of package units, each of which has at least one of the semiconductor components; and a metal layer formed on the substrate and the encapsulant and encapsulating a periphery of the package units, with the second surface exposed from the metal layer, wherein the metal layer is formed along a wall surface of the first groove, to form a second groove corresponding in position to the first groove and having a metal surface. Therefore, the package units are isolated and form a multilayer isolated structure, including metal layers and air layers, and are electromagnetically shielded from one another.
Abstract:
A package structure is provided, which includes: a substrate having opposite first and second surfaces; at least an electronic element disposed on the first surface of the substrate; and an encapsulant formed on the first surface of the substrate for encapsulating the electronic element. The encapsulant has a non-rectangular shape so as to reduce an ineffective space in the encapsulant.
Abstract:
A fabrication method of a semiconductor package is disclosed, which includes the steps of: providing a substrate having at least a carrying region and a cutting region defined on a surface thereof, wherein the cutting region surrounds the carrying region; disposing at least an electronic element on the carrying region of the substrate; disposing a shield having a recess portion and at least a positioning member extending outwards, on the carrying region of the substrate with the electronic element received in the recess portion and the positioning member extending outwards to the cutting region; and performing a cutting process along the cutting region to remove portions of the positioning member and the substrate. Therefore, the shield is precisely positioned on the substrate.
Abstract:
A semiconductor package is disclosed, which includes: a substrate body; a semiconductor element disposed on the substrate body; and a molding compound forms on the substrate body for encapsulating the semiconductor element. The molding compound contains a metal oxide so as to have a high insulation impedance and a high heat dissipating rate and be capable of suppressing electromagnetic interference.
Abstract:
A package having ESD (electrostatic discharge) and EMI (electromagnetic interference) preventing functions includes: a substrate unit having a ground structure and an I/O structure disposed therein; at least a semiconductor component disposed on a surface of the substrate unit and electrically connected to the ground structure and the I/O structure; an encapsulant covering the surface of the substrate unit and the semiconductor component; and a metal layer disposed on exposed surfaces of the encapsulant and side surfaces of the substrate unit and electrically insulated from the ground structure, thereby protecting the semiconductor component against ESD and EMI so as to improve the product yield and reduce the risk of short circuits.
Abstract:
A package structure includes a carrier, an electronic component disposed on the carrier, an encapsulant formed on the carrier for encapsulating the electronic component, a first shielding layer formed on the encapsulant, and a second shielding layer formed on the first shielding layer. The first and second shielding layers are made of different materials. With the multiple shielding layers formed on the encapsulating layer, the electronic component is protected from electromagnetic interferences. The present invention also provides a method for fabricating the package structure.
Abstract:
A method for fabricating a semiconductor package is provided, which includes the steps of: providing a packaging substrate having a first surface with a plurality of bonding pads and an opposite second surface; disposing a plurality of passive elements on the first surface of the packaging substrate; disposing a semiconductor chip on the passive elements through an adhesive film; electrically connecting the semiconductor chip and the bonding pads through a plurality of bonding wires; and forming an encapsulant on the first surface of the packaging substrate for encapsulating the semiconductor chip, the passive elements and the bonding wires. By disposing the passive elements between the packaging substrate and the semiconductor chip, the invention saves space on the packaging substrate and increases the wiring flexibility. Further, since the bonding wires are not easy to come into contact with the passive elements, the invention prevents a short circuit from occurring.