Abstract:
A lubricant for the topical application to objects that will contact various forms of water, e.g., liquid, snow, ice, or mixtures thereof, to reduce friction and thereby increase speed, glide and maneuverability. The lubricant consists essentially of hexagonal boron nitride and a binder of single or mixed oxides or organics, the boron nitride content (after drying) being from about 36 wt. % to about 99 wt. %. Binders of particular interest are water-based colloidal aluminum oxide and colloidal silicon dioxide. This lubricant is suitable for topical applications in a thin layer to various sports objects, such as skis, snowboards, ice skates, snowmobiles, toboggans, sleds, boats, etc., where reduced friction, and thus higher speed, glide and maneuverability is desired. Although a solid stick form (by drying or pressure-less sintering) is preferred, the lubricant can be in the form of a paste or a powder. Further, this lubricant can be incorporated into waxes of the type previously used for friction reduction to obtain the benefit of both.
Abstract:
The present invention provides a transition metal/polymer matrix composite material which has durable, wear and corrosion resistant and friction reducing characteristics which can be used in a powder or liquid form, or, which can be bonded to a desired surface at ambient temperature. The specific components are transition metal dichalcogenides (TMDs) including disulfides, diselenides and ditellurides of Ti, Zr, Hf, V, Nb, Cr, Mo, and W, and polymers including polytetrafuoroethylene (PTFE), hexafluoropropylene, perfluoroalkoxyvinyl ether, ethylenetetrafluoroethylene polymer, polyvinylidene fluoride and ethylenechlorotrifluoroethylene polymer. This invention brings together the unique properties of organic chemistry (PTFE) and inorganic chemistry (TMD's) which creates a synergistic interaction optimizing the friction reducing properties of PTFE with similar friction reducing properties of select TMD's and the TMD's additional wear-resistance and natural tendency for forming a tenacious physical bond at a molecular level. The invention comprises a mixture of PTFE and TMDs (particularly tungsten disulfide and molybdenum disulfide) which can be applied to a substrate through a variety of mechanisms and manners to form a lubricious and wear-resistant layer ranging from 0.5 micron to 60 microns thick.
Abstract:
The present invention concerns a surface coating sliding member made of rubber or plastic applied with a coating of excellent durability and high sliding property, in which the coating contains a solid lubricant such as molybdenum disulfide and a resin matrix, wherein the resin matrix comprises a fluoro-olefin vinyl ether polymer resin and/or fluoro-olefin vinyl ether vinyl ester copolymer.
Abstract:
A recirculating powder lubricant delivery system having improved oxidative stability and a lubricant therefor where the lubricant is a solid lubricant selected from a group of molybdenum disulfide, graphite and graphite fluoride, and wherein the solid lubricant is microencapsulated from an aqueous suspension of an alkali metal silicate containing a water soluble phosphate.
Abstract:
Improved lubrication of tools for hot working rare earth-transition metal alloy particles is provided by suitably applied glass or glass/graphite lubricants.
Abstract:
A wire rod is payed out from a pay-off stand and descaled in a descaling process. After preheating to a predetermined temperature by a preheating device, it is subjected to a lubrication pretreatment through a zinc calcium phosphate solution applied with ultrasonic wave in the lubrication pretreatment process. After rinsing process, the lubrication-pretreated wire rod is coated with a calcium stearate or a sodium stearate in lubricating process. Thereafter, the wire rod is dried sufficiently in drying process, and then added with a predies lubricant in wire drawing process and coiled by a coiler.
Abstract:
An article comprises a substrate; a coating comprising a carbon composite; and a binding layer disposed between the substrate and the coating. The carbon composite comprises carbon and a binder containing one or more of the following: SiO2; Si; B; B2O3; a metal; or an alloy of the metal; and the metal comprises one or more of the following: aluminum; copper; titanium; nickel; tungsten; chromium; iron; manganese; zirconium; hafnium; vanadium; niobium; molybdenum; tin; bismuth; antimony; lead; cadmium; or selenium.
Abstract:
An anti-seizure agent for hot steel working that exhibits excellent wettability and surface film-adherability comprises: an inorganic component (first component); sodium hydroxide (second component); water-soluble resins and/or water-soluble surfactants (third component); and water. With the mass of the sum of the first component, the second component, and the third component as 100 mass %, the anti-seizure agent contains: 96.5 mass % or more and 99.98 mass % or less of the first component; 0.01 mass % or more and 2.0 mass % or less of the second component; and 0.01 mass % or more and 1.5 mass % or less of the third component, and the inorganic component is one or more selected from a group consisting of Al2O3, SiO2, CaO, B2O3, K2O, and Na2O. A coating layer formed after application solidly adheres to the steel and does not come off in the environment of both cold and hot working.
Abstract translation:具有优异的润湿性和表面膜附着性的热钢加工用防咬住剂包括:无机成分(第一成分); 氢氧化钠(第二组分); 水溶性树脂和/或水溶性表面活性剂(第三组分); 和水。 以第一成分,第二成分和第三成分之和的质量为100质量%,防卡定剂含有:第一成分的96.5质量%以上且99.98质量%以下。 0.01质量%以上且2.0质量%以下的第二成分。 0.01质量%以上且1.5质量%以下,无机成分为选自Al 2 O 3,SiO 2,CaO,B 2 O 3,K 2 O,Na 2 O中的一种以上。 在施加后形成的涂层在冷和热加工的环境中牢固地粘附到钢上并且不脱落。
Abstract:
A solid lubricant and composition useful for lubricating the flanges of locomotive wheels, railcar wheels, rail track and in applications where it is desirable to reduce friction when metal contacts metal. The solid lubricant having from about twenty-five percent to about seventy percent by volume of a polymeric carrier, about five to seventy-five percent by volume of organic and inorganic extreme pressure additives, about zero to twenty percent by volume synthetic extreme pressure anti-wear liquid oil, and about zero to one percent by volume optical brightener.