Abstract:
The invention comprises a proton beam positioning method and apparatus used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The proton beam verification system allows for monitoring of the actual proton beam position in real-time without destruction of the proton beam. The system includes a coating or thin layer substantially in contact with a foil covering the end of an exit nozzle or is a layer located after the x- and y-axis proton beam scanning controllers and before the patient. The coating yields a measurable spectroscopic response, spatially viewable by the detector, as a result of transmission by the proton beam. The proton beam position is monitored by the detector and compared to the calibration and/or treatment plan to verify accurate proton delivery to the tumor and/or as a proton beam shutoff safety indicator.
Abstract:
The invention comprises a tandem accelerator method and apparatus, which is part of an ion beam injection system used in conjunction with multi-axis charged particle radiation therapy of cancerous tumors. The negative ion beam source includes an injection system vacuum system and a synchrotron vacuum system separated by a foil, where negative ions are converted to positive ions. The foil is sealed to the edges of the vacuum tube providing for a higher partial pressure in the injection system vacuum chamber and a lower pressure in the synchrotron vacuum system. Having the foil physically separating the vacuum chamber into two pressure regions allows for fewer and/or smaller pumps to maintain the lower pressure system in the synchrotron as the inlet hydrogen gas is extracted in a separate contained and isolated space by the injection partial vacuum system.
Abstract:
A soft ionization device is disclosed that comprises a series of electrodes having spacing less than the means free path of the molecules to be ionized. In some embodiments, the soft ionization device is used in various applications that require ion or electron sources such as biological or chemical reactors, ion milling, and numerous replacements for conventional hot cathode systems. In another embodiment, a valence spectrometer is disclosed that is configured to variably ionize molecules by their valiancy. In other embodiments, the ionization device is coupled to a spectrometer for the characterization of biological matter. Also disclosed is a preconditioner for preparing biological matter to be ionized.
Abstract:
An electron and ion accelerator includes plural spaced electrodes which are apertured to define a gas discharge path and supported at their peripheries by insulative means. A gas supply provides low pressure gas capable of producing electrons and ions in the gas discharge path. A voltage applied between the at least two electrodes establishes an electrical potential between them such that a spark-like gas discharge occurs along the gas discharge path. The current density obtainable in the low pressure gas is substantially higher than the density of an electron or ion flow in a vacuum.
Abstract:
A deceleration apparatus capable of decelerating a short spot beam or a tall ribbon beam is disclosed. In either case, effects tending to degrade the shape of the beam profile are controlled. Caps to shield the ion beam from external potentials are provided. Electrodes whose position and potentials are adjustable are provided, on opposite sides of the beam, to ensure that the shape of the decelerating and deflecting electric fields does not significantly deviate from the optimum shape, even in the presence of the significant space-charge of high current low-energy beams of heavy ions.
Abstract:
A spherical aberration corrector is offered which permits a correction of deviation of the circularity of at least one of an image and a diffraction pattern and a correction of on-axis aberrations to be carried out independently. The spherical aberration corrector (100) is for use with a charged particle beam instrument (1) for obtaining the image and the diffraction pattern and has a hexapole field generating portion (110) for producing plural stages of hexapole fields, an octopole field superimposing portion (120) for superimposing an octopole on at least one of the plural stages of hexapole fields to correct deviation of the circularity of at least one of the image and diffraction pattern, and a deflection portion (130) for deflecting a charged particle beam.
Abstract:
A focused ion beam system includes a gas ion source and an emitter structure. The emitter structure includes a pair of conductive pins fixed to a base member, a filament connected between the pair of conductive pins, and an emitter which has a tip end with one atom or three atoms and which is connected to the filament. A supporting member is fixed to the base material, and the emitter is connected to the supporting member.
Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.
Abstract:
A cathode assembly is for use in a radiation generator and includes an ohmically heated cathode, and a support having formed therein a hole and a recess at least partially surrounding the hole. In addition, there is a mount coupled to the support. The mount includes a larger outer frame positioned within the recess, a smaller inner frame carrying the ohmically heated cathode and spaced apart from the larger outer frame, and a plurality of members coupling the smaller inner frame to the larger outer frame.
Abstract:
Methods of marking paper products and marked paper products are provided. Some methods include irradiating the paper product to alter the functionalization of the paper.