Abstract:
An ion exchanger includes a sheet-shaped positive ion exchanger 2 in which binder particles 5 and positive ionic exchange resin particles 4 are mixed with each other, and a sheet-shaped porous negative ion exchanger 3 in which binder particles 7 and negative ionic exchange resin particles 6 are mixed with each other, the positive ion exchanger 2 and the negative ion exchanger 3 are bonded to each other to form an interface, and capacity of the negative ion exchanger 3 is greater than that of the positive ion exchanger 2. Therefore, the porous ion exchanger 1 is formed and absorbing ability of ion is increased, capacity of the negative ion exchanger 3 is made greater than that of the positive ion exchanger 2, regenerating ability of the ion exchanger with respect to absorbing ability of ion can be secured, and ion absorption and regeneration processing is carried out efficiently.
Abstract:
A filter unit may include an electrode structure, a fluid-purifying flow path, and a pH adjusting chamber. The electrode structure may include a cathode, a cation exchange membrane, an anion exchange membrane, and an anode in that order. The fluid-purifying flow path may be at least one of a path in the cathode, between the cathode and the cation exchange membrane, between the anion exchange membrane and the anode, and in the anode. The fluid-purifying flow path may include an adsorption function. The pH adjusting chamber may be between the cation exchange membrane and the anion exchange membrane. The pH adjusting chamber may be configured to control the pH of the fluid in the fluid-purifying flow path.
Abstract:
The present invention pertains to a method of ion chromatography wherein a specialized electrodeionization (EDI) apparatus is used for simultaneous ion suppression of cations from a flowing base containing an anion sample of interest and ion suppression of anions from a flowing acid containing a cation sample of interest. The methods described herein allow for the ion suppression of samples containing chloride, nitrate, and other electrochemically active anions, as well as sodium, potassium, and other electrochemically active cations, without causing damage to the suppressor.
Abstract:
A bioreactor with an anode and a cathode, and a plurality of reaction chambers each having an inlet and an outlet and each including a porous solid ion exchange wafer having ion-exchange resins. Each of the reaction chambers is interleaved between a cation exchange membrane and an anion exchange membrane or between either a cation or an anion exchange membrane and a bipolar exchange membrane. A product chamber is separated from one of the reaction chambers by either a cation or an anion exchange membrane. Recirculation mechanism is provided for transporting material between the reaction chamber inlets and outlets. A method of producing organic acids, amino acids, or amines using the separative bioreactor is disclosed.
Abstract:
The present invention pertains to a method of ion chromatography wherein a specialized electrodeionization (EDI) apparatus is used for simultaneous ion suppression of cations from a flowing base containing an anion sample of interest and ion suppression of anions from a flowing acid containing a cation sample of interest. The methods described herein allow for the ion suppression of samples containing chloride, nitrate, and other electrochemically active anions, as well as sodium, potassium, and other electrochemically active cations, without causing damage to the suppressor.
Abstract:
A water treatment system provides treated or softened water to a point of use by removing a portion of any hardness-causing species contained in water from a point of entry coming from a water source, such as municipal water, well water, brackish water and water containing foulants. The water treatment system typically treats the water containing at least some undesirable species before delivering the treated water to a point of use. The water treatment system has a reservoir system in line with an electrochemical device. The electrochemical device of the water treatment system is operated at a low current and low flow rate to minimize water splitting or polarization, which minimizes scale formation.
Abstract:
Some embodiments of the invention relate to an electrodeionization device that includes comprising a generally cylindrical housing. The cylindrical housing includes a cylindrical inner core and an inner electrode that extends around the inner core. The cylindrical housing includes a leaf arranged as a spiral winding about the inner electrode and an outer electrode that extends about the spiral winding. Active treatment cells are defined by spaces within the spiral winding and by interleaf spaces thereof. One or more sealing bands extend between membranes of the spiral winding to define fluid flow.
Abstract:
The present invention generally relates to devices able to purify fluids electrically that are contained within pressure vessels, as well as to methods of manufacture and use thereof. Liquids or other fluids to be purified enter the purification device and, under the influence of an electric field, are treated to produce an ion-depleted liquid. Species from the entering liquids are collected to produce an ion-concentrated liquid. Increasing the exterior pressure on the device may reduce the pressure difference between the interior of the device and the exterior, which may reduce manufacturing costs or simplify construction.
Abstract:
An electrodelonization apparatus comprising multiple anion exchange membranes 13 and cation exchange membranes 14 that are alternately arranged between a cathode 12 and an anode 11 to alternately form concentrating compartments 15 and desalting compartments 16 is described. The concentrating compartments 15 and the desalting compartments 16 are filled with ion exchangers, and the filling ratio of anion exchanger to cation exchanger of the ion exchanger in the concentrating compartments 15 is higher than that of the ion exchanger in the desalting compartments 16.
Abstract:
An electric deionized water production apparatus in which a direct current field is applied to a deionizing chamber packed with an ion-exchange material such that ions to be discharged are allowed to migrate in the direction identical or opposite to the direction of the water flow in the ion-exchange material, whereby ionic impurities adsorbed in the ion-exchange material are discharged from the system, the ion-exchange material being a mixture of a monolith-shaped organic porous ion-exchange material and ion-exchange resin particles. The electric deionized water production apparatus has a simple structure that can reduce material cost, process cost, and assembly cost, capable of accelerating migration of the adsorbed ionic impurities to facilitate discharge of the adsorbed ions and free from a deflected flow due to swelling or shrinkage accompanying an ion-exchanging reaction, and from poor contact with an ion-exchange membrane.