Abstract:
To provide a novel nonvolatile latch circuit and a semiconductor device using the nonvolatile latch circuit, a nonvolatile latch circuit includes a latch portion having a loop structure where an output of a first element is electrically connected to an input of a second element, and an output of the second element is electrically connected to an input of the first element; and a data holding portion configured to hold data of the latch portion. In the data holding portion, a transistor using an oxide semiconductor as a semiconductor material for forming a channel formation region is used as a switching element. In addition, a capacitor electrically connected to a source electrode or a drain electrode of the transistor is included.
Abstract:
A memory cell includes a node and first transistor to third transistors. The third transistor and the second transistor are electrically connected to a fourth wiring and a third wiring in series, respectively. A gate of the third transistor is electrically connected to a second wiring. A gate of the second transistor is electrically connected to the node. In the first transistor, a gate is electrically connected to a first wiring, one of a source and a drain is electrically connected to the fourth wiring, and the other of the source and the drain is electrically connected to the node. The first transistor includes an oxide semiconductor layer where a channel is formed and a channel length and a channel width thereof are each shorter than 100 nm. A maximum potential of the first wiring is lower than or equal to 2 V.
Abstract:
An object is to provide a semiconductor device with a novel structure in which stored data can be held even when power is not supplied and there is no limit on the number of write operations. The semiconductor device includes a first memory cell including a first transistor and a second transistor, a second memory cell including a third transistor and a fourth transistor, and a driver circuit. The first transistor and the second transistor overlap at least partly with each other. The third transistor and the fourth transistor overlap at least partly with each other. The second memory cell is provided over the first memory cell. The first transistor includes a first semiconductor material. The second transistor, the third transistor, and the fourth transistor include a second semiconductor material.
Abstract:
Provided is a semiconductor device including first to sixth capacitors, first to fourth wirings, first and second sense amplifiers, and a memory cell array over the first and second sense amplifiers. The first wiring is electrically connected to the memory cell array, one electrode of the first capacitor, the third wiring via a source and a drain of a first transistor, the fourth wiring via the fifth capacitor, and the second wiring via the first sense amplifier. The second wiring is electrically connected to one electrode of the second capacitor, the fourth wiring via a source and a drain of a second transistor, and the third wiring via the sixth capacitor. The third wiring is electrically connected to one electrode of the third capacitor, and the fourth wiring via the second sense amplifier. The fourth wiring is electrically connected to one electrode of the fourth capacitor.
Abstract:
A novel semiconductor device where multilevel data can be written and read. The semiconductor device includes first to fifth transistors, a capacitor, a bit line, and a power supply line. Write operation is performed in such a manner that first data is supplied to a gate of the fifth transistor through the first transistor; the first transistor is turned off; second data is supplied to a second electrode of the capacitor through the second transistor to convert the first data into third data; and the second electrode of the capacitor are made electrically floating. The second electrode of the capacitor is initialized to GND through the third transistor. Read operation is performed by charging or discharging the bit line through the fourth transistor and the fifth transistor. The first to third transistors are preferably oxide semiconductor transistors.
Abstract:
Provided is a semiconductor device which can achieve a reduction in its area, reduction in power consumption, and operation at a high speed. A semiconductor device 10 has a structure in which a circuit 31 including a memory circuit and a circuit 32 including an amplifier circuit are stacked. With this structure, the memory circuit and the amplifier circuit can be mounted on the semiconductor device 10 while the increase in the area of the semiconductor device 10 is suppressed. Thus, the area of the semiconductor device 10 can be reduced. Further, the circuits are formed using OS transistors, so that the memory circuit and the amplifier circuit which have low off-state current and which can operate at a high speed can be formed. Therefore, a reduction in power consumption and improvement in operation speed of the semiconductor device 10 can be achieved.
Abstract:
To provide a memory device where multiple pieces of multilevel data can be written and read. The memory device includes first to fifth transistors, first to fourth capacitors, first to fourth nodes, and first and second wirings. The first node is connected to the first capacitor and a gate of the first transistor, the second node is connected to the second capacitor and a gate of the second transistor, the third node is connected to the third capacitor and a gate of the third transistor, and the fourth node is connected to the fourth capacitor and a gate of the fourth transistor. Multiple pieces of multilevel data is written to the first to fourth nodes through the second to fifth transistors. The second to fifth transistors each preferably include an oxide semiconductor in a channel formation region.
Abstract:
A manufacturing method of a semiconductor device in which the threshold is corrected is provided. In a semiconductor device including a plurality of transistors each includes a semiconductor, a source or drain electrode electrically connected to the semiconductor, a gate electrode, and a charge trap layer between the gate electrode and the semiconductor, electrons are trapped in the charge trap layer by performing heat treatment and, simultaneously, keeping a potential of the gate electrode higher than that of the source or drain electrode for 1 second or more. By this process, the threshold increases and Icut decreases. A circuit for supplying a signal to the gate electrode and a circuit for supplying a signal to the source or drain electrode are electrically separated from each other. The process is performed in the state where the potential of the former circuit is set higher than the potential of the latter circuit.
Abstract:
To provide a semiconductor device having a novel structure. To provide a semiconductor device excellent in reducing power consumption. A memory cell including an SRAM capable of backing up data to the nonvolatile memory and a peripheral circuit of the memory cell are configured to offer different power gating states. In a first period, which is extremely short, the bit line is brought into an electrically floating state by turning off the switch. In a second period, which is longer than the first period, power gating is performed on the memory cell. In a third period, which is longer than the second period, power gating is performed on the memory cell and the peripheral circuits.
Abstract:
A semiconductor with reduced area is provided. A first transistor includes a first conductor, a first insulator over the first conductor, an oxide semiconductor provided over the first insulator so as to overlap with the first conductor, a second insulator over the oxide semiconductor, a second conductor over the second insulator, and a third conductor and a fourth conductor in contact with the oxide semiconductor. The oxide semiconductor includes a region overlapping with the first region and not overlapping with the second region, and a region not overlapping with the first conductor and overlapping with the second conductor in a region positioned between the third conductor and the fourth conductor when viewed from above. The second transistor is a p-channel transistor. A layer in which the first transistor is provided and a layer in which the second transistor is provided are stacked together.