Abstract:
A thyristor may include a first optical waveguide segment in a semiconductor material, having first and second complementary longitudinal parts of opposite conductivity types configured to form a longitudinal bipolar junction therebetween. The thyristor may further include a second optical waveguide segment in a semiconductor material, adjacent the first waveguide segment and having first and second complementary longitudinal parts of opposite conductivity types configured to form a longitudinal bipolar junction therebetween. A transverse bipolar junction may be between the second longitudinal portions of the first and second waveguide segments. An electrical insulator may separate each of the first longitudinal portions from the waveguide segment adjacent thereto.
Abstract:
An image sensor including a semiconductor layer; a stack of insulating layers resting on the back side of the semiconductor layer; a conductive layer portion extending along part of the height of the stack and flush with the exposed surface of the stack; laterally-insulated conductive fingers extending through the semiconductor layer from its front side and penetrating into said layer portion; laterally-insulated conductive walls separating pixel areas, these walls extending through the semiconductor layer from its front side and having a lower height than the fingers; and an interconnection structure resting on the front side of the semiconductor layer and including vias in contact with the fingers.
Abstract:
An integrated circuit includes a silicon on insulator substrate having a semiconductor film located above a buried insulating layer. At least one memory cell of the one-time-programmable type includes an MOS capacitor having a first electrode region including a gate region at least partially silicided and flanked by an insulating lateral region, a dielectric layer located between the gate region and the semiconductor film, and a second electrode region including a silicided zone of the semiconductor film, located alongside the insulating lateral region and extending at least partially under the dielectric layer.
Abstract:
A memory cell of the one-time-programmable type is programmed by application of a programming voltage having a value sufficient to obtain a breakdown of a dielectric of a capacitor within the cell. A programming circuit generates the programming voltage as a variable voltage that varies as a function of a temperature (T) of the cell. In particular, the programming voltage varies based on a variation law decreasing as a function of the temperature.
Abstract:
A device includes integrated circuit chips mounted on one another. At least one component for protecting elements of a first one of the chips is formed in a second one of the chips. Preferably, the chips are of SOI type, the second chip includes an SOI layer having a first thickness sufficient to support the component for protecting elements. The first chip also includes an SOI layer but having a second thickness smaller than the first thickness that is insufficient to support the component for protecting elements. The SOI layer of the second chip may be an optical waveguide layer.
Abstract:
An optical modulator uses an optoelectronic phase comparator configured to provide, in the form of an electrical signal, a measure of a phase difference between two optical waves. The phase comparator includes an optical directional coupler having two coupled channels respectively defining two optical inputs for receiving the two optical waves to be compared. Two photodiodes are configured to respectively receive the optical output powers of the two channels of the directional coupler. An electrical circuit is configured to supply, as a measure of the optical phase shift, an electrical signal proportional to the difference between the electrical signals produced by the two photodiodes.
Abstract:
A device includes a chip assembled on an interposer. An electrically-insulating layer coats an upper surface of the interposer around the chip. First metal lines run on the upper surface of the interposer and are arranged between conductive elements of connection to the chip. An end of each first metal line is arranged to extend beyond a projection of the chip on the interposer. A thermally-conductive via connects the end of the first metal line to a heat sink supported at an upper surface of the device.
Abstract:
A method for extracting characteristic points from an image, includes extracting characteristic points from a first image, generating for each characteristic point a descriptor with several components describing an image region around the characteristic point, and comparing two by two the descriptors of the first image, the characteristic points whose descriptors have a proximity between them greater than an ambiguity threshold, being considered ambiguous.
Abstract:
A photonic integrated circuit includes a first insulating region encapsulating at least one metallization level, a second insulating region at least partially encapsulating a gain medium of a laser source, and a stacked structure placed between the two insulating regions. The stacked structure includes a first polycrystalline or single-crystal silicon layer, a second polycrystalline or single-crystal silicon layer, an intermediate layer optically compatible with the wavelength of the laser source and selectively etchable relative to silicon and that separates the first layer from a first portion of the second layer, and the gain medium facing at least one portion of the first layer. The first layer, the intermediate layer, and the first portion of the second layer form an assembly containing a resonant cavity and a waveguide, which are optically coupled to the gain medium, and a second portion of the second layer containing at least one other photonic component.
Abstract:
A secure memory includes a bistable memory cell having a programmed start-up state, and means for flipping the state of the cell in response to a flip signal. The memory may include a clock for generating the flip signal with a period, for example, smaller than the acquisition time of an emission microscope.