摘要:
A method of forming an organosilicate layer is disclosed. The organosilicate layer is formed by reacting a gas mixture comprising a phenyl-based alkoxysilane compound. The gas mixture may be reacted by applying an electric field thereto. The gas mixture may optionally include an organosilane compound as well as an oxidizing gas. The organosilicate layer is compatible with integrated circuit fabrication processes. In one integrated circuit fabrication process, the organosilicate layer is used as an anti-reflective coating (ARC). In another integrated circuit fabrication process, the organosilicate layer is used as a hardmask. In yet another integrated circuit fabrication process, the organosilicate layer is incorporated into a damascene structure.
摘要:
A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
摘要:
A method for providing a dielectric film having enhanced adhesion and stability. Pre-deposition, post deposition and post cure treatments enhance adhesion of the dielectric film to an underlying substrate and overlying cap layer. The enhanced film is particularly useful as an intermetal or premetal dielectric layer in an integrated circuit. A pre-deposition treatment process with atomic hydrogen enhances film adhesion by reducing weakly bound oxides on the surface of the substrate. A post-deposition densification process in a reducing atmosphere enhances stability if the film is to be cured ex-situ. In a preferred embodiment, the layer a low dielectric constant film deposited from a process gas of ozone and an organosilane precursor having at least one silicon-carbon (Si—C) bond.
摘要:
A method for providing a dielectric film having enhanced adhesion and stability. The method includes a post deposition treatment that densifies the film in a reducing atmosphere to enhance stability if the film is to be cured ex-situ. The densification generally takes place in a reducing environment while heating the substrate. The densification treatment is particularly suitable for silicon-oxygen-carbon low dielectric constant films that have been deposited at low temperature.
摘要:
A method of forming a low dielectric constant silicate material for use in integrated circuit fabrication processes is disclosed. The low dielectric constant silicate material is formed by reacting by reacting a gas mixture comprising an organosilane compound, an oxygen source, and an inert gas. Thereafter, a silicon carbide cap layer is formed on the silicate material by reacting a gas mixture comprising a silicon source and a carbon source. The silicon carbide cap layer protects the underlying organosilicate layer from cracking and peeling when it is hardened during a subsequent annealing step.
摘要:
A method for depositing a low dielectric constant film having an improved hardness and elastic modulus is provided. In one aspect, the method comprises depositing a low dielectric constant film having silicon, carbon, and hydrogen, and then treating the deposited film with a plasma of helium, hydrogen, or a mixture thereof at conditions sufficient to increase the hardness of the film.
摘要:
Methods are provided for depositing an oxygen-doped dielectric layer. The oxygen-doped dielectric layer may be used for a barrier layer or a hardmask. In one aspect, a method is provided for processing a substrate including positioning the substrate in a processing chamber, introducing a processing gas comprising an oxygen-containing organosilicon compound, carbon dioxide, or combinations thereof, and an oxygen-free organosilicon compound to the processing chamber, and reacting the processing gas to deposit an oxygen-doped dielectric material on the substrate, wherein the dielectric material has an oxygen content of about 15 atomic percent or less. The oxygen-doped dielectric material may be used as a barrier layer in damascene or dual damascene applications.
摘要:
A method for processing semiconductor substrates by reacting hydroxyl radicals with a precursor to cause the precursor to decompose and form a film which deposits on a substrate. Hydroxyl radicals, which are produced in a hydroxyl-ion producing apparatus outside of a chemical vapor deposition reactor, are mixed with a precursor to form a hydroxyl ions-precursor mixture. The hydroxyl ions-precursor mixture is introduced into the chemical vapor deposition reactor.
摘要:
The present invention provides systems, methods and apparatus for high temperature (at least about 500-800.degree. C.) processing of semiconductor wafers. The systems, methods and apparatus of the present invention allow multiple process steps to be performed in situ in the same chamber to reduce total processing time and to ensure high quality processing for high aspect ratio devices. Performing multiple process steps in the same chamber also increases the control of the process parameters and reduces device damage. In particular, the present invention can provide high temperature deposition, heating and efficient cleaning for forming dielectric films having thickness uniformity, good gap fill capability, high density, low moisture, and other desired characteristics.
摘要:
A method of forming a silicon carbide layer for use in integrated circuit fabrication processes is provided. The silicon carbide layer is formed by reacting a gas mixture comprising a silicon source, a carbon source, and a dopant in the presence of an electric field. The as-deposited silicon carbide layer has a compressibility that varies as a function of the amount of dopant present in the gas mixture during later formation.