Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. Users may also use portable charging devices that authenticate portable electrical energy storage devices or are authenticated by portable electrical energy storage devices before the charging is allowed or enabled. This authentication may be via wired or wireless communication channels between the portable charging device and portable electrical energy storage device, such as via near field communication (NFC) channels.
Abstract:
A collection, charging and distribution machine collects, charges and distributes portable electrical energy storage devices (e.g., batteries, super- or ultracapacitors). To charge, the machine employs electrical current from an external source, such as the electrical grid or an electrical service of an installation location. The machine determines a first number of devices to be rapidly charged, employing charge from a second number of devices identified to sacrifice charge. Thus, some devices may be concurrently charged via current from the electrical service and current from other devices, to achieve rapid charging of some subset of devices. The devices that sacrifice charge may later be charged. Such may ensure availability of devices for end users.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). To charge, the machines employ electrical current from an external source, such as the electrical grid or an electrical service of an installation location. By default, each portable electrical energy storage device is disabled from accepting a charge unless it receives authentication information from an authorized collection, charging and distribution machine, other authorized charging device, or other authorized device that transmits the authentication credentials. Also, by default, each portable electrical energy storage device is disabled from releasing energy unless it receives authentication information from an external device to which it will provide power, such as a vehicle or other authorization device.
Abstract:
Electrical energy storage device for powering portable devices such as vehicles or consumer electronics includes barriers to minimize migration of thermal energy and propagation of combustion in the rare event that electrical energy storage cells fail, burst and ignite. A burst structure is provided to vent gas from the device in a desired direction in the event pressure within the device exceeds a maximum value. Biased vents permit gases emanating from a portable electrical energy storage cell within an electrical energy storage module to escape and isolate other electrical energy storage cells from the gases.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Availability of charged portable electrical energy storage devices available at a collection, charging and distribution machine are communicated to or acquired by a mobile device of a user or a user's vehicle. Once the mobile device of a user or a user's vehicle comes within close proximity of the collection, charging and distribution machine or within a particular area surrounding the collection, charging and distribution machine, the collection, charging and distribution machine or a collection, charging and distribution machine management system communicates an alert (e.g., over a cellular network, short range wireless signal or wireless fidelity (Wi-Fi) network) to the mobile device or vehicle indicating how many portable electrical energy storage devices are available at the distribution machine.
Abstract:
A network of collection, charging and distribution machines collect, charge and distribute portable electrical energy storage devices (e.g., batteries, supercapacitors or ultracapacitors). Relevant information regarding vehicles that use the collection and distribution machines is communicated to or acquired by mobile devices of users associated with one or more of the vehicles. The vehicle information may include information regarding diagnostics or status of the vehicle and information regarding usage history of the vehicle received from different sources. This information is then processed and analyzed at the mobile device and such information is presented by the mobile device in a useful manner to the user and/or communicated to another device external to the mobile device, such as the vehicle, for further processing or communication of the data.
Abstract:
Systems and methods are provided for detecting that an electric motor drive vehicle (e.g., an electric scooter or motorbike) is idling based on one or more of sensed parameters indicative of the idling state. These sensed parameters may include one or more of, alone or in any combination, a sensed throttle position, at least one sensed electrical characteristic of a traction electric motor, a power converter, or an electrical storage device of the vehicle, and a sensed rate of rotation of a drive shaft of the traction electric motor or of a wheel drivably coupled to the traction electric motor. Upon detecting that the vehicle is in an idling state, a controller of the vehicle enters into a standby mode. In the standby mode, a relatively small amount of electrical power is supplied to the traction electric motor to cause a vibration of the motor to alert a driver that the vehicle is ON in the standby mode and is ready to be driven. Additionally, an audible and/or visual indication may be issued in the standby mode to further alert the driver that the vehicle is ON and ready to be driven.
Abstract:
A vehicle has a security and anti-theft system that senses movement of the vehicle in a forward or backward direction when the vehicle is in a locked state, such as by detecting wheel rotation. Upon this detection, the security system signals the motor to counteract the wheel movement by rotating one or more wheels in the opposite direction of the direction of wheel rotation detected until the wheel rotation is no longer detected. The security and anti-theft system may determine whether the vehicle is in a locked state by detecting whether a key is present and/or by one or more communications received by an external wireless device.