Abstract:
Some embodiments include apparatus and methods having an input to receive an input signal, additional inputs to receive clock signals having different phases to sample the input signal, and a decision feedback equalizer (DFE) having DFE slices. The DFE slices include a number of data comparators to provide data information based on the sampling of the input signal, and a number of phase error comparators to provide phase error information associated with the sampling of the input signal. The number of phase error comparators of the DFE slices is not greater than the number of data comparators of the DFE slices.
Abstract:
Embodiments of the invention are generally directed to systems, methods, and apparatuses for hybrid memory. In one embodiment, a hybrid memory may include a package substrate. The hybrid memory may also include a hybrid memory buffer chip attached to the first side of the package substrate. High speed input/output (HSIO) logic supporting a HSIO interface with a processor. The hybrid memory also includes packet processing logic to support a packet processing protocol on the HSIO interface. Additionally, the hybrid memory also has one or more memory tiles that are vertically stacked on the hybrid memory buffer.
Abstract:
Dynamic bus inversion (DBI) for programmable levels of a ratio of ones and zeros. A transmitting device identifies a number and/or ratio of ones and zeros in a noninverted version of a signal to be transmitted (“noninverted signal”) and a number and/or ratio of ones and zeros in an inverted version of the signal (“inverted signal”). The transmitting device can calculate whether a difference of ones and zeros in the noninverted signal or a difference of ones and zeros in the inverted signal provides a calculated average ratio of ones to zeros closer to a target ratio. The transmitting device sends the signal that achieves provides the calculated average ratio closer to the target ratio.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Described is a reconfigurable transmitter which includes: a first pad; a second pad; a first single-ended driver coupled to the first pad; a second single-ended driver to the second pad; a differential driver coupled to the first and second pads; and a logic unit to enable of the first and second single-ended drivers, or to enable the differential driver.
Abstract:
Described is an apparatus which comprises: an amplifier; a first set of samplers to sample data output from the amplifier according to a clock signal, the set of samplers to generate an output; and a converter to convert the output of the first set of samplers to 1 -hot encoded data.
Abstract:
Techniques for forming high-bandwidth proximity connection between capacitively coupled plug and receptacle are described herein. A system for achieving capacitive coupling between contactless pads is described. The techniques include aligning and retaining the plug and receptacle in close proximity to one another. The techniques include cancelling crosstalk in the system based on the symmetry and orientation of differential pairs comprising signal pads. The techniques include enabling a high-bandwidth proximity transmission by filtering the transmission using a silicon buffer component.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Millimeter wave (mmWave) technology, apparatuses, and methods that relate to transceivers, receivers, and antenna structures for wireless communications are described. The various aspects include co-located millimeter wave (mmWave) and near-field communication (NFC) antennas, scalable phased array radio transceiver architecture (SPARTA), phased array distributed communication system with MIMO support and phase noise synchronization over a single coax cable, communicating RF signals over cable (RFoC) in a distributed phased array communication system, clock noise leakage reduction, IF-to-RF companion chip for backwards and forwards compatibility and modularity, on-package matching networks, 5G scalable receiver (Rx) architecture, among others.
Abstract:
Described is an apparatus which comprises: a Variable Gain Amplifier (VGA); a set of samplers to sample data output from the VGA according to a clock signal; and a Clock Data Recovery (CDR) circuit to adjust phase of the clock signal such that magnitude of a first post-cursor signal associated with the sampled data is substantially half of a magnitude of a primary cursor tap associated with the sampled data.