Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
A non-volatile memory device with a programmable leakage can be formed employing a trench capacitor. After formation of a deep trench, a metal-insulator-metal stack is formed on surfaces of the deep trench employing a dielectric material that develops leakage path filaments upon application of a programming bias voltage. A set of programming transistors and a leakage readout device can be formed to program, and to read, the state of the leakage level. The non-volatile memory device can be formed concurrently with formation of a dynamic random access memory (DRAM) device by forming a plurality of deep trenches, depositing a stack of an outer metal layer and a node dielectric layer, patterning the node dielectric layer to provide a first node dielectric for each non-volatile memory device that is thinner than a second node dielectric for each DRAM device, and forming an inner metal layer.
Abstract:
A method of fabricating a replacement gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over the area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; depositing a sacrificial layer over the thin metal layer; performing a first rapid thermal anneal; removing the sacrificial layer; and depositing a metal layer of low resistivity metal for gap fill.
Abstract:
FinFET structures and methods of manufacturing the FinFET structures are disclosed. The method includes performing an oxygen anneal process on a gate stack of a FinFET structure to induce Vt shift. The oxygen anneal process is performed after sidewall pull down and post silicide.
Abstract:
A method for forming a metal-insulator-metal (MIM) capacitor on a semiconductor substrate is presented. The method includes forming a first electrode defining columnar grains, forming a dielectric layer over the first electrode, and forming a second electrode over the dielectric layer. The first and second electrodes can be titanium nitride (TiN) electrodes. The dielectric layer can include one of hafnium oxide and zirconium oxide deposited by atomic layer deposition (ALD). The ALD results in deposition of high-k films in grain boundaries of the first electrode.
Abstract:
A method for forming a metal-insulator-metal (MIM) capacitor on a semiconductor substrate is presented. The method includes forming a first electrode defining columnar grains, forming a dielectric layer over the first electrode, and forming a second electrode over the dielectric layer. The first and second electrodes can be titanium nitride (TiN) electrodes. The dielectric layer can include one of hafnium oxide and zirconium oxide deposited by atomic layer deposition (ALD). The ALD results in deposition of high-k films in grain boundaries of the first electrode.
Abstract:
A fuse structure includes a substrate, a gate dielectric formed on the substrate, a gate electrode formed on the gate dielectric, and first and second source/drain regions formed on the substrate on opposite sides with respect to the gate electrode, wherein the gate dielectric is configured such that a plurality of oxygen vacancies trapping respective charges are formed upon application of a pulse to the gate electrode.
Abstract:
A method including forming an oxygen gettering layer on one side of an insulating layer of a deep trench capacitor between the insulating layer and a substrate, the oxygen gettering layer including an aluminum containing compound, and depositing an inner electrode on top of the insulating layer, the inner electrode including a metal.
Abstract:
A metal oxide semiconductor field effect transistors (MOSFET) memory array, including a complementary metal oxide semiconductor (CMOS) cell including an n-type MOSFET having a modified gate dielectric; and an n-type or p-type MOSFET having an unmodified gate dielectric layer, where the modified gate dielectric layer incorporates an oxygen scavenging species.
Abstract:
A method of fabricating a gate stack for a semiconductor device includes the following steps after removal of a dummy gate: growing a high-k dielectric layer over an area vacated by the dummy gate; depositing a thin metal layer over the high-k dielectric layer; annealing the replacement gate structure in an ambient atmosphere containing hydrogen; and depositing a gap fill layer.