Abstract:
Methods are provided for conducting a deposition on a semiconductor substrate by selectively depositing a material on the substrate. The substrate has a plurality of substrate materials, each with a different nucleation delay corresponding to the material deposited thereon. Specifically, the nucleation delay associated with a first substrate material on which deposition is intended is less than the nucleation delay associated with a second substrate material on which deposition is not intended according to a nucleation delay differential, which degrades as deposition proceeds. A portion of the deposited material is etched to reestablish the nucleation delay differential between the first and the second substrate materials. The material is further selectively deposited on the substrate.
Abstract:
Methods and apparatuses for depositing an encapsulation layer over a staircase structure during fabrication of a 3D NAND structure to prevent degradation of an oxide-oxide interface and to prevent punchthrough of a wordline are provided. The encapsulation layer is a carbon-containing conformal film deposited over a staircase structure of alternating oxide and nitride layers prior to depositing oxide over the staircase structure.
Abstract:
Methods and techniques for fabricating metal interconnects, lines, or vias by subtractive etching and liner deposition methods are provided. Methods involve depositing a blanket copper layer, removing regions of the blanket copper layer to form a pattern, treating the patterned metal, depositing a copper-dielectric interface material such that the copper-dielectric interface material adheres only to the patterned copper, depositing a dielectric barrier layer on the substrate, and depositing a dielectric bulk layer on the substrate.
Abstract:
Aluminum oxide films characterized by a dielectric constant (k) of less than about 7 (such as between about 4-6) and having a density of at least about 2.5 g/cm3 (such as about 3.0-3.2 g/cm3) are deposited on partially fabricated semiconductor devices over both metal and dielectric to serve as etch stop layers. The films are deposited using a deposition method that does not lead to oxidative damage of the metal. The deposition involves reacting an aluminum-containing precursor (e.g., a trialkylaluminum) with an alcohol and/or aluminum alkoxide. In one implementation the method involves flowing trimethylaluminum to the process chamber housing a substrate having an exposed metal and dielectric layers; purging and/or evacuating the process chamber; flowing t-butanol to the process chamber and allowing it to react with trimethylaluminum to form an aluminum oxide film and repeating the process steps until the film of desired thickness is formed.
Abstract:
Dielectric AlO, AlOC, AlON and AlOCN films characterized by a dielectric constant (k) of less than about 10 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers and/or diffusion barriers. In one implementation, a substrate containing an exposed dielectric layer (e.g., a ULK dielectric) and an exposed metal layer is contacted with an aluminum-containing compound (such as trimethylaluminum) in an iALD process chamber and the aluminum-containing compound is allowed to adsorb onto the surface of the substrate. This step is performed in an absence of plasma. Next, the unadsorbed aluminum-containing compound is removed from the process chamber, and the substrate is treated with a process gas containing CO2 or N2O, and an inert gas in a plasma to form an AlO, AlOC, or AlON layer. These steps are then repeated.
Abstract:
Various embodiments herein relate to formation of contact etch stop layers in the context of forming gates and contacts. In certain embodiments, a novel process flow is used, which may involve the deposition and removal of a sacrificial pre-metal dielectric material before a particular contact etch stop layer is formed. An auxiliary contact etch stop layer may be used in addition to a primary etch stop layer that is deposited previously. In certain cases the contact etch stop layer is a metal-containing material such as a nitride or an oxide. The contact etch stop layer may be deposited through a cyclic vapor deposition in some embodiments. The process flows disclosed herein provide improved protection against over-etching gate stacks, thereby minimizing gate-to-contact leakage. Further, the disclosed process flows result in wider flexibility in terms of materials and deposition conditions used for forming various dielectric materials, thereby minimizing parasitic capacitance.
Abstract:
Methods and apparatus for selective deposition of cobalt on copper lines in the presence of exposed dielectric in semiconductor processing are provided. Cobalt in its metallic form is selectively deposited onto copper in the presence of dielectric by contacting a prepared surface of the substrate with an organometallic cobalt compound in a presence of a reducing agent. Surface preparation involves H2 treatment with concurrent UV light irradiation. After the substrate surface is prepared, the substrate is contacted with an organometallic cobalt compound comprising a substituted or unsubstituted allyl ligand in a presence of a reducing agent to selectively deposit cobalt on copper. No plasma treatment during or after cobalt deposition is necessary, and the method can be used in a presence of a ULK dielectric without causing damage to dielectric. Deposited cobalt caps are used to reduce copper electromigration and to improve adhesion of copper to subsequently deposited layers.
Abstract:
Methods for forming patterned multi-layer stacks including a metal-containing layer are provided herein. Methods involve using silicon-containing non-metal materials in a multi-layer stack including one sacrificial layer to be later removed and replaced with metal while maintaining etch contrast to pattern the multi-layer stack and selectively remove the sacrificial layer prior to depositing metal. Methods involve using silicon oxycarbide in lieu of silicon nitride, and a sacrificial non-metal material in lieu of a metal-containing layer, to fabricate the multi-layer stack, pattern the multi-layer stack, selectively remove the sacrificial non-metal material to leave spaces in the stack, and deposit metal-containing material into the spaces. Sacrificial non-metal materials include silicon nitride and doped polysilicon, such as boron-doped silicon.
Abstract:
Various embodiments include an apparatus to supply gases to a tool. In various examples, the apparatus includes a point-of-use (POU) valve manifold that includes a manifold body to couple to a chamber of the tool. The manifold body has multiple gas outlet ports. A purge-gas outlet port of the manifold body is directed substantially toward the outlet ports. For each of multiple gases to be input to the POU-valve manifold, the POU-valve manifold further includes: a first valve coupled to the manifold body and a divert valve coupled to the first valve. The first valve can be coupled to a gas supply and has a separate gas flow path internal to the manifold body and separate from remaining ones of the gas flow paths. The divert valve diverts the gas during a period when the precursor gas is not to be directed into the chamber by the first valve. Other examples are disclosed.
Abstract:
Aluminum oxide films with a thickness of between about 10-50 Å, characterized by a dielectric constant (k) of less than about 7 (such as about 4-6) and having a density of at least about 2.5 g/cm3 (such as about 3.0-3.2 g/cm3) are deposited on partially fabricated semiconductor devices over a metal (e.g., cobalt or copper) such that the metal does not show signs of oxidation. In some embodiments, the films are etch stop films.