Abstract:
Methods and related apparatus for depositing an ashable hard mask (AHM) on a substrate include pulsing a low frequency radio frequency component at a high power. Pulsing low frequency power may be used to increase the selectivity or reduce the stress of an AHM. The AHM may then be used to etch features into underlying layers of the substrate.
Abstract:
A method for depositing a nitride layer over an oxide layer to form an oxide-nitride stack is provided. The method includes supplying an inert gas to a plasma enhanced chemical vapor deposition (PECVD) reactor that supports a substrate having said oxide layer. Then, providing power to an electrode of the PECVD reactor, where the power is configured to strike a plasma. Then, flowing reactant gases into the PECVD reactor. The reactant gases include a first percentage by volume of ammonia (NH3), a second percentage by volume of nitrogen (N2), a third percentage by volume of silane (SiH4) and a fourth percentage by volume of an oxidizer. The fourth percentage by volume of said oxidizer is at least 0.5 percent by volume and less than about 8 percent by volume. Then, continuing to flow the reactant gases into the PECVD reactor until the nitride layer is determined to achieve a target thickness over the oxide layer.
Abstract:
A method for depositing a nitride layer over an oxide layer to form an oxide-nitride stack is provided. The method includes supplying an inert gas to a plasma enhanced chemical vapor deposition (PECVD) reactor that supports a substrate having said oxide layer. Then, providing power to an electrode of the PECVD reactor, where the power is configured to strike a plasma. Then, flowing reactant gases into the PECVD reactor. The reactant gases include a first percentage by volume of ammonia (NH3), a second percentage by volume of nitrogen (N2), a third percentage by volume of silane (SiH4) and a fourth percentage by volume of an oxidizer. The fourth percentage by volume of said oxidizer is at least 0.5 percent by volume and less than about 8 percent by volume. Then, continuing to flow the reactant gases into the PECVD reactor until the nitride layer is determined to achieve a target thickness over the oxide layer.
Abstract:
A carrier ring configured to support a substrate during transport to or from a pedestal of a process tool and surrounding the substrate during processing is defined by, an inner annular portion having a first thickness, the inner annular portion defined to be adjacent a substrate support region of the pedestal; a middle annular portion surrounding the inner annular portion, the middle annular portion having a second thickness greater than the first thickness, such that a transition from a top surface of the inner annular portion to a top surface of the middle annular portion defines a first step; an outer annular portion surrounding the middle annular portion, the outer annular portion having a third thickness greater than the second thickness, such that a transition from the top surface of the middle annular portion to a top surface of the outer annular portion defines a second step.
Abstract:
Methods of forming high etch selectivity, low stress ashable hard masks using plasma enhanced chemical vapor deposition are provided. In certain embodiments, the methods involve pulsing low frequency radio frequency power while keeping high frequency radio frequency power constant during deposition of the ashable hard mask using a dual radio frequency plasma source. According to various embodiments, the low frequency radio frequency power can be pulsed between non-zero levels or by switching the power on and off. The resulting deposited highly selective ashable hard mask may have decreased stress due to one or more factors including decreased ion and atom impinging on the ashable hard mask and lower levels of hydrogen trapped in the ashable hard mask.
Abstract:
Protective caps residing at an interface between copper lines and dielectric diffusion barrier layers are used to improve various performance characteristics of interconnects. The caps, such as cobalt-containing caps or manganese-containing caps, are selectively deposited onto exposed copper lines in a presence of exposed dielectric using CVD or ALD methods. The deposition of the capping material is affected by the presence of carbon-containing contaminants on the surface of copper, which may lead to poor or uneven growth of the capping layer. A method of removing carbon-containing contaminants from the copper surface prior to deposition of caps involves contacting the substrate containing the exposed copper surface with a silylating agent at a first temperature to form a layer of reacted silylating agent on the copper surface, followed by heating the substrate at a higher temperature to release the reacted silylating agent from the copper surface.
Abstract:
Methods and apparatus for selective deposition of cobalt on copper lines in the presence of exposed dielectric in semiconductor processing are provided. Cobalt in its metallic form is selectively deposited onto copper in the presence of dielectric by contacting a prepared surface of the substrate with an organometallic cobalt compound in a presence of a reducing agent. Surface preparation involves H2 treatment with concurrent UV light irradiation. After the substrate surface is prepared, the substrate is contacted with an organometallic cobalt compound comprising a substituted or unsubstituted allyl ligand in a presence of a reducing agent to selectively deposit cobalt on copper. No plasma treatment during or after cobalt deposition is necessary, and the method can be used in a presence of a ULK dielectric without causing damage to dielectric. Deposited cobalt caps are used to reduce copper electromigration and to improve adhesion of copper to subsequently deposited layers.
Abstract:
A carrier ring configured to support a substrate during transport to or from a pedestal of a process tool and surrounding the substrate during processing is defined by, an inner annular portion having a first thickness, the inner annular portion defined to be adjacent a substrate support region of the pedestal; a middle annular portion surrounding the inner annular portion, the middle annular portion having a second thickness greater than the first thickness, such that a transition from a top surface of the inner annular portion to a top surface of the middle annular portion defines a first step; an outer annular portion surrounding the middle annular portion, the outer annular portion having a third thickness greater than the second thickness, such that a transition from the top surface of the middle annular portion to a top surface of the outer annular portion defines a second step.
Abstract:
Dielectric AlO, AlOC, AlON and AlOCN films characterized by a dielectric constant (k) of less than about 10 and having a density of at least about 2.5 g/cm3 are deposited on partially fabricated semiconductor devices to serve as etch stop layers and/or diffusion barriers. In one implementation, a substrate containing an exposed dielectric layer (e.g., a ULK dielectric) and an exposed metal layer is contacted with an aluminum-containing compound (such as trimethylaluminum) in an iALD process chamber and the aluminum-containing compound is allowed to adsorb onto the surface of the substrate. This step is performed in an absence of plasma. Next, the unadsorbed aluminum-containing compound is removed from the process chamber, and the substrate is treated with a process gas containing CO2 or N2O, and an inert gas in a plasma to form an AlO, AlOC, or AlON layer. These steps are then repeated.
Abstract:
Methods and apparatus for selective deposition of cobalt on copper lines in the presence of exposed dielectric in semiconductor processing are provided. Cobalt in its metallic form is selectively deposited onto copper in the presence of dielectric by contacting a prepared surface of the substrate with an organometallic cobalt compound in a presence of a reducing agent. Surface preparation involves H2 treatment with concurrent UV light irradiation. After the substrate surface is prepared, the substrate is contacted with an organometallic cobalt compound comprising a substituted or unsubstituted allyl ligand in a presence of a reducing agent to selectively deposit cobalt on copper. No plasma treatment during or after cobalt deposition is necessary, and the method can be used in a presence of a ULK dielectric without causing damage to dielectric. Deposited cobalt caps are used to reduce copper electromigration and to improve adhesion of copper to subsequently deposited layers.