Abstract:
The present invention is directed to a microfluidic chromatography apparatus comprising a microfabricated fluid delivery system and a chromatography column which is in fluid communication with the fluid delivery system, and a method for producing and using the same. Preferably, the chromatography column comprises an OTLC, PCLC, or combinations thereof.
Abstract:
A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyzes. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyzes requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyzes.
Abstract:
Methods and systems are provided for conducting a reaction at a selected temperature or range of temperatures over time. An array device is provided. The array device contains separate reaction chambers and is formed as an elastomeric block from multiple layers. At least one layer has at least one recess that recess has at least one deflectable membrane integral to the layer with the recess. The array device has a thermal transfer device proximal to at least one of the reaction chambers. The thermal transfer device is formed to contact a thermal control source. Reagents for carrying out a desired reaction are introduced into the array device. The array device is contacted with a thermal control device such that the thermal control device is in thermal communication with the thermal control source so that a temperature of the reaction in at least one of the reaction chamber is changed as a result of a change in temperature of the thermal control source.
Abstract:
The present invention provides assay methods that increase the number of samples and/or target nucleic acids that can be analyzed in a single assay. In certain embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a sample-specific nucleotide tag and a target nucleotide sequence. In some embodiments, an assay method entails separately subjecting S samples to an encoding reaction that produces a set of T tagged target nucleotide sequences, each tagged target nucleotide sequence including a first nucleotide tag linked to a target nucleotide sequence, which is linked to a second nucleotide tag. In either case, the tagged target nucleotide sequences from the S samples can be mixed to form an assay mixture and subsequently assayed.
Abstract:
Multilevel microfluidic devices include a control line that can simultaneously actuate valves for both sample and reagent lines. Microfluidic devices are configured to contain a first reagent in a first chamber and a second reagent in a second chamber, where either or both of the first and second reagents are contained at a desired or selected pressure. Operation of a microfluidic device includes transmitting second reagent from the second chamber to the first chamber, for mixing or contact with the first reagent. Microfluidic device features such as channels, valves, chambers, can be at least partially contained, embedded, or formed by or within one or more layers or levels of an elastomeric block.
Abstract:
The presence of a detectable entity within a detection volume of a microfabricated elastomeric structure is sensed through a change in the electrical or magnetic environment of the detection volume. In embodiments utilizing electronic detection, an electric field is applied to the detection volume and a change in impedance, current, or combined impedance and current due to the presence of the detectable entity is measured. In embodiments utilizing magnetic detection, the magnetic properties of a magnetized detected entity alter the magnetic field of the detection volume. This changed magnetic field induces a current which can reveal the detectable entity. The change in resistance of a magnetoresistive element may also reveal the passage of a magnetized detectable entity.
Abstract:
A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
Abstract:
A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
Abstract:
A variety of elastomeric-based microfluidic devices and methods for using and manufacturing such devices are provided. Certain of the devices have arrays of reaction sites to facilitate high throughput analyses. Some devices also include reaction sites located at the end of blind channels at which reagents have been previously deposited during manufacture. The reagents become suspended once sample is introduced into the reaction site. The devices can be utilized with a variety of heating devices and thus can be used in a variety of analyses requiring temperature control, including thermocycling applications such as nucleic acid amplification reactions, genotyping and gene expression analyses.
Abstract:
The present invention provides for microfluidic devices and methods for their use. The invention further provides for apparatus and systems for using the microfluidic devices, analyze reactions carried out in the microfluidic devices, and systems to generate, store, organize, and analyze data generated from using the microfluidic devices. The invention further provides methods of using and making microfluidic systems and devices which, in some embodiments, are useful for crystal formation. In one embodiment, an apparatus includes a platen having a platen face with one or more fluid ports therein. The fluid ports spatially correspond to one or more wells on a surface of the microfluidic device. A platform for holding the microfluidic device relative to the platen is included, and a platen actuator for urging the platen against the microfluidic device so that at least one of the fluid ports of the platen is urged against one of the wells to form a pressure chamber comprising the well and the port, so that when pressurized fluid is introduced or removed into or from the pressure chamber through one of the ports, fluid pressure is changed therein.