Abstract:
A semiconductor mechanical sensor having a new structure in which a S/N ratio is improved. In the central portion of a silicon substrate 1, a recess portion 2 is formed which includes a beam structure. A weight is formed at the tip of the beam, and in the bottom surface of the weight in the bottom surface of the recess portion 2 facing the same, an electrode 5 is formed. An alternating current electric power is applied between the weight portion 4 and the electrode 5 so that static electricity is created and the weight is excited by the static electricity. In an axial direction which is perpendicular to the direction of the excitation of the weight, an electrode 6 is disposed to face one surface of the weight and a wall surface of the substrate which faces the same. A change in a capacitance between the facing electrodes is electrically detected, and therefore, a change in a physical force acting in the same direction is detected.
Abstract:
A protective sheet is fixed to a jig, and regions of the protective sheet corresponding to regions where dicing-cut is to be performed are removed to form grooves. Then, a semiconductor wafer is bonded to the protective sheet at an opposite side of the jig, and the jig is detached from the protective sheet and the semiconductor wafer bonded together. After that, the semiconductor wafer is cut into semiconductor chips by dicing along the grooves of the protective sheet. Because the protective sheet is not cut by dicing, no scraps of the protective sheet is produced, thereby preventing contamination to the chips.
Abstract:
An SOI-type semiconductor device in which electrical elements formed on one semiconductor substrate are isolated from each other by an insulating film and a shield layer, to ensure a stable operation of the electrical elements against electrical noise etc., and at the same time, a stress relief film is formed between the insulating film and the shield layer to ensure that an SOI layer is stabilized by being free from crystal defects. A process for producing same is also disclosed.
Abstract:
First to third frames are formed by etching to penetrate a silicon substrate on the substrate. A plurality of thin cantilevered beams are formed in different lengths by cutting by etching the substrate in the frames; the beams formed in the first frame are formed perpendicular to the surface of the substrate to bend only in the X-axis direction, parallel to the surface of the substrate; the beams formed in the second frame are formed perpendicular to the surface of the substrate to bend only in the Y-axis direction, parallel to the surface of the substrate; and the beams formed in the third frame are formed to bend only in the Z-axis direction, perpendicular to the surface of the substrate. Masses are formed at the free ends of the beams, and piezo resistance layers are formed at the fixed ends. Signals generated from the piezo resistance layers by an integrated circuit are supplied to the regions, different from the regions formed of the first to third frames, of the substrate to form a signal processor for generating acceleration detection signals.
Abstract:
A process for producing a light color high softening point hydrocarbon resin, which comprises polymerizing an oil fraction obtained by condensing a fractionated component withdrawn in a gas phase from a recovery section of a fractionating tower located below the feeding section and above the bottom of the tower during the fractional distillation in the tower of a feed oil fraction having a boiling point within a range of from 140.degree. to 280.degree. C. selected among cracked oil fractions obtained by thermal cracking of petroleum.
Abstract:
An apparatus for optically detecting the attachment state of extraneous matters to a translucent shield member. The optically detecting apparatus comprises a light-emitting unit having a plurality of light-emitting elements each emitting a light ray toward the translucent shield member, a photoelectric transducer unit having a plurality of transducer elements each receiving each of the light rays reflected on the translucent shield member, and a data processing unit coupled to the transducer unit. The transducer unit generates detection signals corresponding to the quantities of the received light rays and the data processing unit successively compares the level of each of the detection signals with a predetermined level to produce binary signals in accordance with the results of the comparison so that a binary signal pattern is defined at the respective transducer elements. The data processing unit determines the attachment state of the extraneous matters to the translucent shield member by comparing the defined binary signal pattern with a reference pattern.
Abstract:
A gallium nitride (GaN) based light emitting diode (LED), wherein light is extracted through a nitrogen face (N-face) of the LED and a surface of the N-face is roughened into one or more hexagonal shaped cones. The roughened surface reduces light reflections occurring repeatedly inside the LED, and thus extracts more light out of the LED. The surface of the N-face is roughened by an anisotropic etching, which may comprise a dry etching or a photo-enhanced chemical (PEC) etching.
Abstract:
A semiconductor device includes: a SOI substrate including a support layer, a first insulation film and a SOI layer; a first circuit; a second circuit; and a trench separation element. The SOI substrate further includes a first region and a second region. The first region has the support layer, the first insulation film and the SOI layer, which are stacked in this order, and the second region has only the support layer. The trench separation element penetrates the support layer, the first insulation film and the SOI layer. The trench separation element separates the first region and the second region. The first circuit is disposed in the SOI layer of the first region. The second circuit is disposed in the support layer of the second region.
Abstract:
A semiconductor device includes a lead frame, a semiconductor chip, a substrate, a plurality of chip parts, a plurality of wires, and a resin member. The lead frame includes a chip mounted section and a plurality of lead sections. The semiconductor chip is mounted on the chip mounted section. The substrate is mounted on the chip mounted section. The chip parts are mounted on the substrate. Each of the chip parts has a first end portion and a second end portion in one direction, and each of the chip parts has a first electrode at the first end portion and a second electrode at the second end portion. Each of the wires couples the second electrode of one of the chip parts and one of the lead sections. The resin member covers the lead frame, the semiconductor chip, the substrate, the chip parts, and the wires.
Abstract:
A physical quantity detection device includes: an insulating layer; a semiconductor layer on the insulating layer; and first and second electrodes in the semiconductor layer. Each electrode has a wall part, one of which includes two diaphragms and a cover part. The diaphragms facing each other provide a hollow cylinder having an opening covered by the cover part. One diaphragm faces the other wall part or one diaphragm in the other wall part. A distance between the one diaphragm and the other wall part or the one diaphragm in the other wall part is changed with pressure difference between reference pressure in the hollow cylinder and pressure of an outside when a physical quantity is applied to the diaphragms. The physical quantity is detected by a capacitance between the first and second electrodes.