Abstract:
The invention relates to an electron gun for generating a flat electron beam, comprising a cathode with an emission surface which is curved about a central axis and which is designed to emit electrons. The electron gun further comprises an accelerating device for accelerating the electrons in a radial direction towards a target region on the central axis. Furthermore, the emission surface has a width in the azimuth direction and a height oriented perpendicularly to the width, said width being at least ten times greater than the height.
Abstract:
An ion implantation apparatus includes a scanning unit scanning the ion beams in a horizontal direction perpendicular to the reference trajectory and a downstream electrode device disposed downstream of the scanning electrode device. The scanning electrode device includes a pair of scanning electrodes disposed to face each other in the horizontal direction with the reference trajectory interposed therebetween. The downstream electrode device includes an electrode body configured such that, with respect to an opening width in a vertical direction perpendicular to both the reference trajectory and the horizontal direction and/or an opening thickness in a direction along the reference trajectory, the opening width and/or the opening thickness in a central portion in which the reference trajectory is disposed is different from the opening width and/or the opening thickness in the vicinity of a position facing the downstream end of the scanning electrode.
Abstract:
A system includes an integrated circuit (IC) design data base having a feature, a source configured to generate a radiation beam, a pattern generator (PG) including a mirror array plate and an electrode plate disposed over the mirror array plate, wherein the electrode plate includes a lens let having a first dimension and a second dimension perpendicular to the first dimension with the first dimension larger than the second dimension so that the lens let modifies the radiation beam to form the long shaped radiation beam, and a stage configured secured the substrate. The system further includes an electric field generator connecting the mirror array plate. The mirror array plate includes a mirror. The mirror absorbs or reflects the radiation beam. The radiation beam includes electron beam or ion beam. The second dimension is equal to a minimum dimension of the feature.
Abstract:
A ion source comprises: a chamber, an injection to inject matter into the chamber, wherein said matter comprises at least a first species, a tip with an apex located in the chamber, wherein the apex has a surface made of a metallic second species, a generator to generate ions of said species, and a regulation system adapted to set operative conditions of the chamber to alternatively generate ions from the gaseous first species, and ions from the non-gaseous metallic second species.
Abstract:
A method of compensating mechanical, magnetic and/or electrostatic inaccuracies in a scanning charged particle beam device is described. The method includes an alignment procedure, wherein the following steps are conducted: compensating 4-fold astigmatism with an element having at least 8-pole compensation capability, wherein the aligning and compensating steps of the alignment procedure act on a charged particle beam with beam dimensions in two orthogonal directions each of at least 50 μm and coaxially aligned with at least the element having at least the 8-pole compensation capability.
Abstract:
An electrostatic lens unit of the present disclosure includes an electrostatic lens fixed to a fixing member. The electrostatic lens has a plurality of electrodes arranged apart from each other by a spacing member and each having a through hole through which a charged beam passes. The electrostatic lens is fixed to the fixing member at a position, on a side where the charged beam goes out, shifted from a center of a thickness of the electrostatic lens in a direction of an optical axis.Part of a surface of the electrostatic lens on the side where the charged beam enters is connected to the fixing member via a supporting member.
Abstract:
Provided is an electrostatic lens array, including multiple substrates arranged with intervals, each of the multiple substrates having an aperture for passing a charged particle beam, in which: in a travelling direction of the charged particle beam, a peripheral contour line formed by any one of surfaces of the multiple substrates other than an upper surface of a most upstream substrate and a lower surface of a most downstream substrate has a protruding portion protruding from a peripheral contour line of one of the upper surface of the most upstream substrate and the lower surface of the most downstream substrate; and a position of the protruding portion is defined by a position regulating member, whereby parallelism is adjustable so that a surface including the protruding portion is parallel to a surface to be irradiated with the charged particle beam after passing through the aperture.
Abstract:
Systems and methods of an ion implant apparatus include an ion source for producing an ion beam along an incident beam axis. The ion implant apparatus includes a beam deflecting assembly coupled to a rotation mechanism that rotates the beam deflecting assembly about the incident beam axis and deflects the ion beam. At least one wafer holder holds target wafers and the rotation mechanism operates to direct the ion beam at one of the at least one wafer holders which also rotates to maintain a constant implant angle.
Abstract:
An achromatic beam separator device for separating a primary charged particle beam from another charged particle beam and providing the primary charged particle beam on an optical axis (142) is provided, including a primary charged particle beam inlet (134), a primary charged particle beam outlet (132) encompassing the optical axis, a magnetic deflection element (163) adapted to generate a magnetic field, and an electrostatic deflection element (165) adapted to generate an electric field overlapping the magnetic field, wherein at least one element chosen from the electrostatic deflection element and the magnetic deflection element is positioned and/or positionable to compensate an octopole influence.