Abstract:
A valved microfluidics device, microfluidics cell-culture device and system incorporating the devices are disclosed. The valved microfluidics device includes a substrate, a microchannel through which liquid can be moved from one station to another within the device, and a pneumatic microvalve adapted to be switched between open and closed states to control the flow of fluid through a microchannel. The microvalve is formed of three flexible membranes, one of which is responsive to pneumatic pressure applied to the valve and the other two of which deform to produce a more sealable channel cross-section. The cell culture device provides valving to allow controlled loading of cells into the individual well of the device, and exchange of cell-culture components in the wells.
Abstract:
A number of novel improved microfluidic configurations and systems and methods of manufacture and operation for a microfluidic invasion assay system.
Abstract:
Systems and methods for hemodialysis or peritoneal dialysis having integrated electrodeionization capabilities are provided. In an embodiment, the dialysis system includes a carbon source, a urease source and an electrodeionization unit. The carbon source and urease source can be in the form of removable cartridges.
Abstract:
The invention concerns a device comprising a circuit comprising a bag (10) comprising two flexible films (65, 66), a press (9) comprising a first shell (16) disposed upright on a front face of a base of the device and a second shell (17) mounted on said first shell, which shells clamp said bag to form conduits (13); said press is provided with a system (170) for jamming at the location of a treatment zone (67) of the bag, which comprises a jamming member (171) provided with at least one jamming nipple (173) and a complementary jamming member (172) provided with a jamming channel (174) configured to receive said nipple; said jamming member (171) and complementary jamming member (172) and said bag (10) being configured in order for the latter to have a portion (175) in said treatment zone in which said films are jammed between said nipple and said channel.
Abstract:
The present invention provides novel and improved protein purification processes which incorporate certain types of carbonaceous materials and result in effective and selective removal of certain undesirable impurities without adversely effecting the yield of the desired protein product.
Abstract:
A method and device for packing a chromatography column formed of one or more vibration devices attached to top and/or bottom flanges of the column. Media is added in one or more steps to the column, allowed to settle under the effects of gravity and then subjected to one or more treatments of vibration from the vibration devices until a suitably packed column is obtained. Liquid used to suspend the media while being placed into the column may be at least partially removed before or during the vibration step(s). The remaining liquid is then removed or replaced after the packing has been obtained.
Abstract:
The present invention relates to chromatography matrices including ligands based on one or more domains of immunoglobulin-binding proteins such as, Staphylococcus aureus Protein A (SpA), as well as methods of using the same.
Abstract:
The invention consists in a disposable module (31) for purifying a fluid, in particular water, adapted to form part of a thud purification system and comprising fluid purification means (25, 28), a housing (35) in which the purification means are housed, and means for removably connecting the purification module (31) to the purification system to establish fluid communication between the purification system and the purification module (31), characterized in that the housing (35) contains from the outset a cleaning agent (36) disposed to come into contact with the fluid caused to circulate inside the housing (35) to clean at least a portion of the purification system, it also consists in the purification system and corresponding fabrication and cleaning methods.
Abstract:
The invention relates to a process for increasing the observed titer of a virus stock for the purpose of increasing the calculated log reduction (LRV) in virus clearance studies. A tissue culture or assay plate is seeded with an indicator cell line and titrated with a virus stock followed, by a centrifugation step for about 5 minutes to about 24 hours at a g-force ranging from about 50×g to about 2400×g, and at a temperature from about 4° C. to about 39° C. The resulting calculated virus titer after undergoing the centrifugation step is 10-fold higher than the virus titer would be if determined in the absence of the centrifuging step.
Abstract:
The present invention relates to novel and improved methods for the purification of biomolecules. In particular, the present invention relates to methods of protein purification which employ a porous solid support modified with a charged fluorocarbon composition.