Abstract:
Embodiments of the present invention provide methods of removing fin portions from a finFET. At a starting point, a high-K dielectric layer is disposed on a substrate. A fin hardmask and lithography stack is deposited on the high-k dielectric. A fin hardmask is exposed, and a first portion of the fin hardmark is removed. The lithography stack is removed. A second portion of the fin hardmask is removed. Fins are formed. A gap fill dielectric is deposited and recessed.
Abstract:
Methods are provided for dimension-controlled via formation over a circuit structure, including over multiple adjacent conductive structures. The method(s) includes, for instance, providing a patterned multi-layer stack structure above the circuit structure, the stack structure including at least one layer, and a pattern transfer layer above the at least one layer, the pattern transfer layer being patterned with at least one via opening; providing a sidewall spacer layer within the at least one via opening to form at least one dimension-controlled via opening; and etching through the at least one layer of the stack structure using the at least one dimension-controlled via opening to facilitate providing the via(s) over the circuit structure. In one implementation, the stack structure includes a trench-opening within a patterned hard mask layer disposed between a dielectric layer and a planarization layer, and the via(s) is partially self-aligned to the trench.
Abstract:
Integrated circuits with improved gate structures and methods for fabricating integrated circuits with improved gate structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures. A gate-forming material is deposited over the semiconductor substrate and fin structures. The method includes performing a first etch process to etch the gate-forming material to form a gate line having a first side and a second side. The first side and second side of the gate line are bounded with material. The method includes performing a second etch process to etch a portion of the gate line bound by the material to separate the gate line into adjacent gate structures and to define a tip-to-tip distance between the adjacent gate structures.
Abstract:
A lithographic stack over a raised structure (e.g., fin) of a non-planar semiconductor structure, such as a FinFET, includes a bottom layer of spin-on amorphous carbon or spin-on organic planarizing material, a hard mask layer of a nitride and/or an oxide on the spin-on layer, a layer of a developable bottom anti-reflective coating (dBARC) on the hard mask layer, and a top layer of photoresist. The stack is etched to expose and recess the raised structure, and epitaxial structure(s) are grown on the recess.
Abstract:
Etching a feature of a structure by an etch system is facilitated by varying supply of radio frequency (RF) power pulses to the etch system. The varying provides at least one RF power pulse, of the supplied RF power pulses, that deviates from one or more other RF power pulses, of the supplied RF power pulses, by at least one characteristic.
Abstract:
Embodiments of the present invention provide an improved structure and method of contact formation. A cap nitride is removed from a gate in a region that is distanced from a fin. This facilitates reduced process steps, allowing the gate and the source/drain regions to be opened in the same process step. Extreme Ultraviolet Lithography (EUVL) may be used to pattern the resist to form the contacts.
Abstract:
Measurement of thickness of layers of a circuit structure is obtained, where the thickness of the layers is measured using an optical critical dimension (OCD) measurement technique, and the layers includes a high-k layer and an interfacial layer. Measurement of thickness of the high-k layer is separately obtained, where the thickness of the high-k layer is measured using a separate measurement technique from the OCD measurement technique. The separate measurement technique provides greater decoupling, as compared to the OCD measurement technique, of a signal for thickness of the high-k layer from a signal for thickness of the interfacial layer of the layers. Characteristics of the circuit structure, such as a thickness of the interfacial layer, are ascertained using, in part, the separately obtained thickness measurement of the high-k layer.
Abstract:
Integrated circuits with improved gate structures and methods for fabricating integrated circuits with improved gate structures are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate with fin structures. A gate-forming material is deposited over the semiconductor substrate and fin structures. The method includes performing a first etch process to etch the gate-forming material to form a gate line having a first side and a second side. The first side and second side of the gate line are bounded with material. The method includes performing a second etch process to etch a portion of the gate line bound by the material to separate the gate line into adjacent gate structures and to define a tip-to-tip distance between the adjacent gate structures.
Abstract:
Embodiments of the present invention provide methods of removing fin portions from a finFET. At a starting point, a high-K dielectric layer is disposed on a substrate. A fin hardmask and lithography stack is deposited on the high-k dielectric. A fin hardmask is exposed, and a first portion of the fin hardmark is removed. The lithography stack is removed. A second portion of the fin hardmask is removed. Fins are formed. A gap fill dielectric is deposited and recessed.
Abstract:
Approaches for providing a planar metrology pad adjacent a set of fins of a fin field effect transistor (FinFET) device are disclosed. A previously deposited amorphous carbon layer can be removed from over a mandrel that has been previously formed on a subset of a substrate, such as using a photoresist. A pad hardmask can be formed over the mandrel on the subset of the substrate. This formation results in the subset of the substrate having the pad hardmask covering the mandrel thereon and the remainder of the substrate having the amorphous carbon layer covering the mandrel thereon. This amorphous carbon layer can be removed from over the mandrel on the remainder of the substrate, allowing a set of fins to be formed therein while the amorphous carbon layer keeps the set of fins from being formed in the portion of the substrate that it covers.