摘要:
A semiconductor test pad interconnect structure with integrated die-separation protective barriers. The interconnect structure includes a plurality of stacked metal layers each having an electrically conductive test pad separated from other test pads by a dielectric material layer. In one embodiment, at least one metallic via bar is embedded into the interconnect structure and electrically interconnects each of the test pads in the metal layers together. The via bar extends substantially along an entire first side defined by each test pad in some embodiments. In other embodiments, a pair of opposing via bars may be provided that are arranged on opposite sides of a die singulation saw cut line defined in a scribe band on a semiconductor wafer.
摘要:
A semiconductor test pad interconnect structure with integrated die-separation protective barriers. The interconnect structure includes a plurality of stacked metal layers each having an electrically conductive test pad separated from other test pads by a dielectric material layer. In one embodiment, at least one metallic via bar is embedded into the interconnect structure and electrically interconnects each of the test pads in the metal layers together. The via bar extends substantially along an entire first side defined by each test pad in some embodiments. In other embodiments, a pair of opposing via bars may be provided that are arranged on opposite sides of a die singulation saw cut line defined in a scribe band on a semiconductor wafer.
摘要:
An integrated circuit structure includes a first, a second and a third metallization layer. The first metallization layer includes a first dielectric layer having a first k value; and first metal lines in the first dielectric layer. The second metallization layer is over the first metallization layer, and includes a second dielectric layer having a second k value greater than the first k value; and second metal lines in the second dielectric layer. The third metallization layer is over the second metallization layer, and includes a third dielectric layer having a third k value; and third metal lines in the third dielectric layer. The integrated circuit structure further includes a bottom passivation layer over the third metallization layer.
摘要:
An embodiment is a bump bond pad structure that comprises a substrate comprising a top layer, a reinforcement pad disposed on the top layer, an intermediate layer above the top layer, an intermediate connection pad disposed on the intermediate layer, an outer layer above the intermediate layer, and an under bump metal (UBM) connected to the intermediate connection pad through an opening in the outer layer. Further embodiments may comprise a via mechanically coupling the intermediate connection pad to the reinforcement pad. The via may comprise a feature selected from the group consisting of a solid via, a substantially ring-shaped via, or a five by five array of vias. Yet, a further embodiment may comprise a secondary reinforcement pad, and a second via mechanically coupling the reinforcement pad to the secondary reinforcement pad.
摘要:
A system and method for forming an underbump metallization (UBM) is presented. A preferred embodiment includes a raised UBM which extends through a passivation layer so as to make contact with a contact pad while retaining enough of the passivation layer between the contact pad and the UBM to adequately handle the peeling and shear stress that results from CTE mismatch and subsequent thermal processing. The UBM contact is preferably formed in either an octagonal ring shape or an array of contacts.
摘要:
A system and method for forming an underbump metallization (UBM) is presented. A preferred embodiment includes a raised UBM which extends through a passivation layer so as to make contact with a contact pad while retaining enough of the passivation layer between the contact pad and the UBM to adequately handle the peeling and shear stress that results from CTE mismatch and subsequent thermal processing. The UBM contact is preferably formed in either an octagonal ring shape or an array of contacts.
摘要:
A pad structure in a semiconductor wafer for wafer testing is described. The pad structure includes at least two metal pads connected there-between by a plurality of conductive visa in one or more insulation layers. A plurality of contact bars in contact with the bottom-most metal pad extends substantially vertically from the bottom-most metal pad into the substrate. An isolation structure substantially surrounds the plurality of contact bars to isolate the pad structure.
摘要:
A semiconductor substrate is provided having a first metal layer formed over a first insulating layer. A second insulating layer is formed having a first damascene opening, the first opening having a second insulating layer portion formed therein. A resist layer is deposited to fill the first opening and the resist layer is thereafter patterned to form an etching mask for etching a second damascene opening. The second opening is etched into a portion of the second insulating layer, the second opening exposing a portion of the first metal layer. A second metal layer is formed to include filling the first and second damascene openings embedding the second insulating layer portion in the second metal layer. The second metal layer is planarized and a passivation layer is formed above the second insulating layer and the second metal layer, wherein the passivation layer partially covers the second metal layer.
摘要:
A device includes a metal pad, a passivation layer overlapping edge portions of the metal pad, and a first polymer layer over the passivation layer. A Post-Passivation-Interconnect (PPI) has a level portion overlying the first polymer layer, and a plug portion that has a top connected to the level portion. The plug portion extends into the first polymer layer. A bottom surface of the plug portion is in contact with a dielectric material. A second polymer layer is overlying the first polymer layer.
摘要:
A semiconductor test pad interconnect structure with integrated die-separation protective barriers. The interconnect structure includes a plurality of stacked metal layers each having an electrically conductive test pad separated from other test pads by a dielectric material layer. In one embodiment, at least one metallic via bar is embedded into the interconnect structure and electrically interconnects each of the test pads in the metal layers together. The via bar extends substantially along an entire first side defined by each test pad in some embodiments. In other embodiments, a pair of opposing via bars may be provided that are arranged on opposite sides of a die singulation saw cut line defined in a scribe band on a semiconductor wafer.