Abstract:
A semiconductor chip includes a body having a frontside, a backside opposite the frontside, and sidewalls extending between the backside and frontside, at least a portion of each sidewall having a defined surface structure with hydrophobic characteristics to inhibit travel of a bonding material along the sidewalls during attachment of the semiconductor chip to a carrier with the bonding material.
Abstract:
In accordance with an embodiment of the present invention, a method of forming a semiconductor device includes attaching a substrate to a carrier using an adhesive component and forming a through trench through the substrate to expose the adhesive component. At least a portion of the adhesive component is etched and a metal layer is formed over sidewalls of the through trench.
Abstract:
A method of separating individual dies of a semiconductor wafer includes forming a metal layer on a first surface of a semiconductor wafer, the semiconductor wafer including a plurality of dies, separating the plurality of dies from one another, and electrical discharge machining the metal layer into individual segments each of which remains attached to one of the dies. A corresponding semiconductor die produced by such a method is also provided.
Abstract:
A semiconductor device includes a silicon carbide layer, a metal carbide layer arranged over the silicon carbide layer, and a solder layer arranged over and in contact with the metal carbide layer.
Abstract:
Methods for processing a semiconductor workpiece can include providing a semiconductor workpiece that includes one or more kerf regions; forming one or more trenches in the workpiece by removing material from the one or more kerf regions from a first side of the workpiece; mounting the workpiece with the first side to a carrier; thinning the workpiece from a second side of the workpiece; and forming a metallization layer over the second side of the workpiece.
Abstract:
A hole plate and a MEMS microphone arrangement are disclosed. In an embodiment a hole plate includes a substrate with a first main surface, a second main surface, and a lateral surface and a perforation structure formed within the substrate, the perforation structure having a plurality of through-holes through the substrate, wherein the through-holes and the lateral surface are a result of a simultaneous dry etching step.
Abstract:
According to various embodiments, a method for processing a semiconductor substrate may include: covering a plurality of die regions of the semiconductor substrate with a metal; forming a plurality of dies from the semiconductor substrate, wherein each die of the plurality of dies is covered with the metal; and, subsequently, annealing the metal covering at least one die of the plurality of dies.
Abstract:
In accordance with an alternative embodiment of the present invention, a method for forming a semiconductor device includes applying a paste over a semiconductor substrate, and forming a ceramic carrier by solidifying the paste. The semiconductor substrate is thinned using the ceramic carrier as a carrier.
Abstract:
A method for structuring a substrate and a structured substrate are disclosed. In an embodiment a method includes providing a substrate with a first main surface and a second main surface, wherein the substrate is fixed to a carrier arrangement at the second main surface, performing a photolithography step at the first main surface of the substrate to mark a plurality of sites at the first main surface, the plurality of sites corresponding to future perforation structures and future kerf regions for a plurality of future individual semiconductor chips to be obtained from the substrate, and plasma etching the substrate at the plurality of sites until the carrier arrangement is reached, thus creating the perforation structures within the plurality of individual semiconductor chips and simultaneously separating the individual semiconductor chips along the kerf regions.
Abstract:
A method of dicing a wafer includes providing a wafer and etching the wafer to singulate die between kerf line segments defined within an interior region of the wafer and to singulate a plurality of wafer edge areas between the kerf line segments and a circumferential edge of the wafer. Each one of the plurality of wafer edge areas is singulated by kerf lines that each extend between one of two endpoints of one of the kerf line segments and the circumferential edge of the wafer.