Abstract:
A headlight device for use in an automobile and of the type including a lamp body having a recess opening in the front direction, a lens covering the front end of the lamp body, a reflective mirror being formed of a synthetic resin material and tiltably supported between the lamp body and the lens, and a lamp supported on the reflective mirror. The reflective mirror is supported on the lamp body through one rotatable portion and two space adjusting portions. Each space adjusting portion consists of a nut member supported on the mirror and an adjusting rod rotatably supported on the lamp body and having a screw-thread portion for engaging screw-threadingly with the nut member. A bracket is formed on the reflective mirror integrally for supporting the nut member and has a recess in the front side thereof. And the front surface of a wall defining the front end of the recess acts as a part of the reflective mirror.
Abstract:
[Object] It is an object to provide an injection method for injecting an electrolyte and an electrolyte injection apparatus which allow the electrolyte to be injected and filled into an electrode assembly within an outer can with favorable permeation, thereby easily manufacturing an electrolyte secondary battery having favorable cycle characteristics at good yield.[Solution] A solution injection nozzle 10 is inserted into a solution injection hole 101 of an outer can 100 in which an electrode assembly 110 is stored, and the solution injection hole 101 is hermetically sealed by a pressure reducing pad 11 provided so as to surround a periphery of the solution injection nozzle 10. An inside of the outer can 100 is made into a negative pressure through the pressure reducing pad 11, and an electrolyte L is supplied from the solution injection nozzle 10 into the outer can 100. The outer can 100 is rotated with the solution injection nozzle 10 as a rotation center.
Abstract:
A vehicle drive control system includes a motor coupled with the driving shaft of an internal combustion engine so that torque can be transmitted to the drive wheels when fuel supply to the engine is cut off. The vehicle travels in a creeping mode in this state while motoring of the engine is performed through driving force of the motor. When accelerator depression is detected, fuel injection into a cylinder waiting for the intake stroke of the engine is begun and the engine is started. The crank angle position at a time when fuel injection is started is utilized as a reference position. When the crankshaft of the engine rotates from the reference crank angle position to a predetermined crank angle position, driving by the motor is stopped and the vehicle is then driven by the engine.
Abstract:
An information processing apparatus includes a two-dimensional orthogonal transform coding data acquisition unit for sequentially acquiring two-dimensional orthogonal transform coding data acquired by transforming three-dimensional orthogonal transform coding data generated from a plurality of images, a two-dimensional orthogonal transform coefficient data generation unit for generating a plurality of pieces of two-dimensional orthogonal transform coefficient data using the plurality of pieces of acquired two-dimensional orthogonal transform coding data, and a three-dimensional transformation unit for encoding three-dimensional orthogonal transform coefficient data acquired by transforming the plurality of pieces of generated two-dimensional orthogonal transform coefficient data.
Abstract:
A burner is arranged axially of a burner throat on a furnace wall and includes a nozzle body housed in a wind box and with a secondary air adjuster on a leading end of the nozzle body. The adjuster includes an end plate for defining together with a near-furnace side surface of the wind box a cylindrical space opened in an outer circumference thereof, a slide damper axially slidable for surrounding the cylindrical space, air vanes arranged at predetermined intervals and circumferentially of the cylindrical space for swirling a secondary air and drive means and for slide movement of the slide damper.
Abstract:
An object of the present invention is to allow stress that may be applied to a semiconductor package to be suppressed, when the semiconductor package is mounted on a curved board. In a mount board 1, a semiconductor package 20 is mounted on a curved board 10 including a curved surface on at least a portion thereof. The curved board 10 includes a pedestal portion 13a disposed on a region of the curved surface portion where the semiconductor package 20 is mounted and having an upper surface thereof formed flat, and a plurality of pad portions 15a disposed on the flat surface of the pedestal portion 13a. The pedestal portion 13a is formed of an insulating material. The semiconductor package 20 is mounted on the pad portions 15a.
Abstract:
The valve timing controller for the internal combustion engine determines, based on a control parameter during phase angle feedback control, whether or not the valve timing variable mechanism is pressed against a limiting position defined by a stopper, sets a second target phase angle on a reference rotational phase angle value side of the camshaft by a first predetermined value from a detected real phase angle value of the camshaft when the stopper pressing determination means determines that the valve timing variable mechanism is pressed against the limiting position defined by the stopper, and switches a target phase angle during the phase angle feedback control from the first target phase angle to the second target phase angle.
Abstract:
The present invention is directed to an image decoding apparatus adapted for decoding information obtained by implementing inverse quantization and inverse orthogonal transform to image compressed information in which an input image signal is blocked to implement orthogonal transform thereto on the block basis so that quantization is performed with respect thereto, which comprises a reversible decoder (12) for decoding quantized and encoded transform coefficients, an inverse quantizer (13) indicating, as a flag, in inverse-quantizing transform coefficients which have been decoded by the reversible decoder (12), existence of each transform coefficient every processing block of inverse quantization, and an inverse transform element (14) for changing inverse transform processing to be implemented to inverse quantization transform coefficients within processing block by using the flag which has been indicated by the inverse-quantizer (13).
Abstract:
A mounting structure comprises at least one semiconductor device having solder bumps on a lower surface thereof as outer terminals and a flexible wiring board with wiring formed thereon. The semiconductor device is wrapped in a flexible wiring board; the mounting structure is provided with outer electrodes on both of a side on which the outer terminals of the semiconductor device are formed and an opposite side thereto; at least one wiring layer is formed on the flexible wiring board; and a supporting member is affixed between a lower surface of the semiconductor device on which the outer terminals are formed and the flexible wiring board.