Abstract:
A planar integrated MEMS device has a piezoelectric element on a dielectric isolation layer over a flexible element attached to a proof mass. The piezoelectric element contains a ferroelectric element with a perovskite structure formed over an isolation dielectric. At least two electrodes are formed on the ferroelectric element. An upper hydrogen barrier is formed over the piezoelectric element. Front side singulation trenches are formed at a periphery of the MEMS device extending into the semiconductor substrate. A DRIE process removes material from the bottom side of the substrate to form the flexible element, removes material from the substrate under the front side singulation trenches, and forms the proof mass from substrate material. The piezoelectric element overlaps the flexible element.
Abstract:
A semiconductor device having a vertical drain extended MOS transistor may be formed by forming deep trench structures to define vertical drift regions of the transistor, so that each vertical drift region is bounded on at least two opposite sides by the deep trench structures. The deep trench structures are spaced so as to form RESURF regions for the drift region. Trench gates are formed in trenches in the substrate over the vertical drift regions. The body regions are located in the substrate over the vertical drift regions.
Abstract:
An integrated circuit containing an extended drain MOS transistor which has a drift layer, an upper RESURF layer over and contacting an upper surface of the drift layer, and a buried drain extension below the drift layer which is electrically connected to the drift layer at the drain end and separated from the drift layer at the channel end. A lower RESURF layer may be formed between the drift layer and the buried drain extension at the channel end. Any of the upper RESURF layer, the drift layer, the lower RESURF layer and the buried drain extension may have a graded doping density from the drain end to the channel end. A process of forming an integrated circuit containing an extended drain MOS transistor which has the drift layer, the upper RESURF layer, and the buried drain extension.
Abstract:
A electronic multi-output device having a substrate including a pad and pins. A composite first chip has a first and a second transistor integrated so that the first terminals of the transistors are merged into a common terminal on one chip surface. Patterned second and third terminals are on the opposite chip surface. The common first terminal is attached to the substrate pad. The second terminals are connected by discrete first and second metal clips to respective substrate pins. A composite second chip has a third and a fourth transistor integrated so that the second terminals of the transistors are merged into a common terminal on one chip surface. Patterned first and third terminals are on the opposite chip surface. The second chip is flipped to be vertically attached with its first terminals to the first and second clips, respectively. The third terminals are connected by discrete clips to respective substrate pins. The common second terminal is connected by a common clip to a substrate pin.
Abstract:
An integrated circuit and method having a JFET with a buried drift layer and a buried channel in which the buried channel is formed by implanting through segmented implant areas so that the doping density of the buried channel is between 25 percent and 50 percent of the doping density of the buried drift layer.
Abstract:
A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
Abstract:
An integrated circuit and method having an extended drain MOS transistor with a buried drift region, a drain diffused link, a channel diffused link, and an isolation link which electrically isolated the source, where the isolation diffused link is formed by implanting through segmented areas to dilute the doping to less than two-thirds the doping in the drain diffused link.
Abstract:
A microelectronic device includes a heat spreader layer on an electrode of a component and a metal interconnect on the heat spreader layer. The heat spreader layer is disposed above a top surface of a substrate of the semiconductor device. The heat spreader layer is 100 nanometers to 3 microns thick, has an in-plane thermal conductivity of at least 150 watts/meter-° K, and an electrical resistivity less than 100 micro-ohm-centimeters.
Abstract:
An integrated circuit including a high-voltage n-channel MOS power transistor, a high-voltage n-channel MOS blocking transistor, a high-voltage n-channel MOS reference transistor, and a voltage comparator, configured to provide an overcurrent signal if drain current through the power transistor in the on state exceeds a predetermined value. The power transistor source node is grounded. The blocking transistor drain node is connected to the power transistor drain node. The blocking transistor source node is coupled to the comparator non-inverting input. The reference transistor drain node is fed by a current source and is connected to the comparator inverting input. The reference transistor gate node is coupled to a gate node of the power transistor. The comparator output provides the overcurrent signal. A process of operating the integrated circuit is disclosed.
Abstract:
An integrated circuit containing a dual drift layer extended drain MOS transistor with an upper drift layer contacting a lower drift layer along at least 75 percent of a common length of the two drift layers. An average doping density in the lower drift layer is between 2 and 10 times an average doping density in the upper drift layer. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, using an epitaxial process. A process of forming an integrated circuit containing a dual drift layer extended drain MOS transistor with a lower drift extension under the body region and an isolation link which electrically isolates the body region, on a monolithic substrate.