Abstract:
Some embodiments of the present disclosure relate to a method that achieves a substantially uniform pattern of magnetic random access memory (MRAM) cells with a minimum dimension below the lower resolution limit of some optical lithography techniques. A copolymer solution comprising first and second polymer species is spin-coated over a heterostructure which resides over a surface of a substrate. The heterostructure comprises first and second ferromagnetic layers which are separated by an insulating layer. The copolymer solution is subjected to self-assembly into a phase-separated material comprising a pattern of micro-domains of the second polymer species within a polymer matrix comprising the first polymer species. The first polymer species is then removed, leaving a pattern of micro-domains of the second polymer species. A pattern of magnetic memory cells within the heterostructure is formed by etching through the heterostructure while utilizing the pattern of micro-domains as a hardmask.
Abstract:
In some embodiments, the present disclosure relates to a processing tool that includes a wafer chuck disposed within a hot plate chamber and having an upper surface configured to hold a semiconductor wafer. A heating element is disposed within the wafer chuck and configured to increase a temperature of the wafer chuck. A motor is coupled to the wafer chuck and configured to rotate the wafer chuck around an axis of rotation extending through the upper surface of the wafer chuck. The processing tool further includes control circuitry coupled to the motor and configured to operate the motor to rotate the wafer chuck while the temperature of the wafer chuck is increased to form a piezoelectric layer from a sol-gel solution layer on the semiconductor wafer.
Abstract:
In some embodiments, the present disclosure relates to a microelectromechanical system (MEMS) comb actuator including a comb structure. The comb structure includes a support layer having a first material and a plurality of protrusions extending away from a first surface of the support layer in a first direction. The plurality of protrusions are also made of the first material. The plurality of protrusions are separated along a second direction parallel to the first surface of the support layer. The MEMS comb actuator may further include a dielectric liner structure that continuously and completely covers the first surface of the support layer and outer surfaces of the plurality of protrusions. The dielectric liner structure includes a connective portion that continuously connects topmost surfaces of at least two of the plurality of protrusions.
Abstract:
Some embodiments relate to a method. In this method, a semiconductor wafer having a frontside and a backside is received. A frontside structure is formed on the frontside of the semiconductor wafer. The frontside structure exerts a first wafer-bowing stress that bows the semiconductor wafer by a first bow amount. A characteristic is determined for one or more stress-inducing films to be formed based on the first bow amount. The one or more stress-inducing films are formed with the determined characteristic on the backside of the semiconductor wafer and/or on the frontside of the semiconductor wafer to reduce the first bow amount in the semiconductor wafer.
Abstract:
A method of manufacturing a photomask includes at least the following steps. First, a phase shift layer and a hard mask layer are formed on a light transmitting substrate. A predetermined mask pattern is split into a first pattern and a second pattern. A series of processes is performed so that the hard mask layer and the phase shift layer have the first pattern and the second pattern. The series of processes includes at least the following steps. First, a first exposure process for transferring the first pattern is performed. Thereafter, a second exposure process for transferring the second pattern is performed. The first exposure process and the second exposure process are executed by different machines.
Abstract:
Some embodiments relate to an integrated circuit (IC) disposed on a silicon substrate, which includes a well region having a first conductivity type. A dielectric layer is arranged over an upper surface of the silicon substrate, and extends over outer edges of the well region and includes an opening that leaves an inner portion of the well region exposed. An epitaxial pillar of SiGe or Ge extends upward from the inner portion of the well region. The epitaxial pillar includes a lower epitaxial region having the first conductivity type and an upper epitaxial region having a second conductivity type, which is opposite the first conductivity type. A dielectric sidewall structure surrounds the epitaxial pillar and has a bottom surface that rests on an upper surface of the dielectric layer.
Abstract:
A quantum nano-tip (QNT) thin film, such as a silicon nano-tip (SiNT) thin film, for flash memory cells is provided to increase erase speed. The QNT thin film includes a first dielectric layer and a second dielectric layer arranged over the first dielectric layer. Further, the QNT thin film includes QNTs arranged over the first dielectric layer and extending into the second dielectric layer. A ratio of height to width of the QNTs is greater than 50 percent. A QNT based flash memory cell and a method for manufacture a SiNT based flash memory cell are also provided.
Abstract:
The present disclosure relates to a structure and method for forming a flash memory cell with an improved erase speed and erase current. Si dots are used for charge trapping and an ONO sandwich structure is formed over the Si dots. Erase operation includes direct tunneling as well as FN tunneling which helps increase erase speed without compensating data retention.
Abstract:
Some embodiments of the present disclosure relate to a method for forming flash memory. In this method, a first tunnel oxide is formed over a semiconductor substrate. A self-assembled monolayer (SAM) is then formed on the first tunnel oxide. The SAM includes spherical or spherical-like crystalline silicon dots having respective diameters which are less than approximately 30 nm. A second tunnel oxide is then formed over the SAM.
Abstract:
Wafer bowing induced by deep trench capacitors is ameliorated by structures formed on the reverse side of the wafer. The structures on the reverse side include tensile films. The films can be formed within trenches on the back side of the wafer, which enhances their effect. In some embodiments, the wafers are used to form 3D-IC devices. In some embodiments, the 3D-IC device includes a high voltage or high power circuit.