摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes lithographically patterning the top metal layer into the contact zones and the contact enhancement zones; then forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A semiconductor package and method for making a semiconductor package are disclosed. The semiconductor package has a top surface and a mounting surface and includes a die, a conducting connecting material, a plating material and an insulating material. The die has a processed surface facing towards the mounting surface of the semiconductor package. Exposed metal connections are at the processed surface of the die. The conducting connecting material is disposed on the exposed metal connections. The plating material is in contact with the conducting connecting material. The insulating material is formed around the conducting connecting material, and the plating material extends to the exterior of the insulating material.
摘要:
A semiconductor package is disclosed for packaging two adjacent semiconductor dies atop a circuit substrate. The dies are separated from each other along their longitudinal edges with an inter-die distance. An elevation-adaptive electrical connection connects a top metalized contact of die two to the bottom surface of die one while accommodating for elevation difference between the surfaces. The elevation-adaptive electrical connection includes: a) An L-shaped circuit route that is part of the circuit substrate, extending transversely from a die one longitudinal edge and placing an intermediate contact area next to a die two transverse edge. b) An interconnection plate connecting the top metalized contact area of die two with the intermediate contact area while being formed to accommodate for elevation difference between the contact areas. Consequently, the semiconductor package reduces the inter-die distance from an otherwise direct transverse circuit routing between the longitudinal edges of the dies.
摘要:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, and a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metallized source contacts. A bridged source plate interconnection has a bridge portion, valley portions disposed on either side of the bridge portion, plane portions disposed on either side of the valley portions and the bridge portion, and a connection portion depending from one of the plane portions, the bridged source plate interconnection connecting the source lead with the plurality of metallized source contacts. The bridge portion is disposed in a plane above the plane of the valley portions while the plane portions are disposed in a plane intermediate the plane of the bridge portion and the plane of the valley portions.
摘要:
A circuit package assembly is disclosed. The assembly includes a conductive substrate; a high-side n-channel metal oxide semiconductor field effect transistor (NMOSFET) having a source on a side facing a surface of the conductive substrate and in electrical contact therewith and a low-side standard n-channel metal oxide semiconductor field effect transistor (NMOSFET) having a drain on a side facing the conductive substrate and in electrical contact therewith. Co-packaging of high-side and low-side NMOSFETs in this manner may reduce package size and parasitic inductance and capacitance compared to conventional packaging.
摘要:
A direct gold/silicon eutectic die bonding method is disclosed. The method includes the steps of gold plating a die bonding pad, grinding a wafer to a desired thickness, dicing the wafer after the grinding step, picking a die, and attaching the die to the die bonding pad at a temperature above the gold/silicon eutectic temperature. For thinner wafers, a dicing before grinding process is employed.
摘要:
A semiconductor package and method for making a semiconductor package are disclosed. The semiconductor package has a top surface and a mounting surface and includes a die, a conducting connecting material, a plating material and an insulating material. The die has a processed surface facing towards the mounting surface of the semiconductor package. Exposed metal connections are at the processed surface of the die. The conducting connecting material is disposed on the exposed metal connections. The plating material is in contact with the conducting connecting material. The insulating material is formed around the conducting connecting material, and the plating material extends to the exterior of the insulating material.
摘要:
A DFN semiconductor package includes a leadframe having a die bonding pad formed integrally with a drain lead, a gate lead and a source lead, a die coupled to the die bonding pad, a die source bonding area coupled to the source lead and a die gate bonding area coupled to the gate lead, and an encapsulant at least partially covering the die, drain lead, gate lead and source lead.
摘要:
A solder-top enhanced semiconductor device is proposed for packaging. The solder-top device includes a device die with a top metal layer patterned into contact zones and contact enhancement zones. At least one contact zone is electrically connected to at least one contact enhancement zone. Atop each contact enhancement zone is a solder layer for an increased composite thickness thus lowered parasitic impedance. Where the top metal material can not form a uniform good electrical bond with the solder material, the device die further includes an intermediary layer sandwiched between and forming a uniform electrical bond with the top metal layer and the solder layer. A method for making the solder-top device includes lithographically patterning the top metal layer into the contact zones and the contact enhancement zones; then forming a solder layer atop each of the contact enhancement zones using a stencil process for an increased composite thickness.
摘要:
A semiconductor package is disclosed. The package includes a leadframe having drain, source and gate leads, a semiconductor die coupled to the leadframe, the semiconductor die having a plurality of metalized source areas and a metalized gate area, a patterned source connection having a plurality of dimples formed thereon coupling the source lead to the semiconductor die metalized source areas, a patterned gate connection having a dimple formed thereon coupling the gate lead to the semiconductor die metalized gate area, a semiconductor die drain area coupled to the drain lead, and an encapsulant covering at least a portion of the semiconductor die and drain, source and gate leads.