Abstract:
A rotatable LIDAR device including contactless electrical couplings is disclosed. An example rotatable LIDAR device includes a vehicle electrical coupling including (i) a first conductive ring, (ii) a second conductive ring, and (iii) a first coil. The example rotatable LIDAR device further includes a LIDAR electrical coupling including (i) a third conductive ring, (ii) a fourth conductive ring, and (iii) a second coil. The example rotatable LIDAR device still further includes a rotatable LIDAR electrically coupled to the LIDAR electrical coupling. The first conductive ring and the third conductive ring form a first capacitor configured to transmit communications to the rotatable LIDAR, the second conductive ring and the fourth conductive ring form a second capacitor configured to transmit communications from the rotatable LIDAR, and the first coil and the second coil form a transformer configured to provide power to the rotatable LIDAR.
Abstract:
The present invention relates to a safety apparatus (20) for monitoring charging of an electrical energy store in a motor vehicle (100), having at least one first sensor device (21a) and at least one second sensor device (21b), the two of which are each designed to capture motion data for the motor vehicle (100) and to provide said motion data as a sensor signal; and a control device (25) that is coupled to the at least one first sensor device (21a) and to the at least one second sensor device (21b) and that is designed to deactivate the at least one second sensor device (21b) while the electrical energy store is being charged and, if the control device (25) detects motion of the motor vehicle (100) on the basis of one of the provided sensor signals, to actuate at least one actuator device (30) of the motor vehicle (100) in order to brake the motor vehicle (100).
Abstract:
A hybrid vehicle includes an engine; a traction battery; and a controller or a vehicle control system having a controller. The controller is programmed to respond to a state of charge (SOC) of the traction battery. When the SOC is greater than a predicted SOC the controller is programmed to decrease a SOC threshold at which the engine is shut down to reduce the SOC. The SOC threshold is defined by a difference between a maximum SOC and an expected change in the SOC associated with predicted regenerative energy for a drive cycle.
Abstract:
Methods, systems, and products charge a battery in a vehicle. A charging station and the vehicle negotiate charging parameters. When the vehicle receives electrical power from the charging station, the vehicle checks the electrical power for the parameters. Should the electrical power fail to exhibit the parameters, charging is terminated.
Abstract:
In a slip control device for an electric vehicle, a slip control section is provided which is configured to perform, in a control repetition cycle, a series of slip control of determining whether or not a slip state has occurred, on the basis of the number of rotations of a drive wheel and the number of rotations of a driven wheel observed by respective rotation number observation sections and, and decreasing a torque command value to a motor if the slip state has occurred. A vehicle speed detection section configured to detect a vehicle speed and a control repetition cycle change section configured to lengthen the control repetition cycle of the slip control section when the vehicle speed detected by the vehicle speed detection section is in a predetermined low-speed range, are provided.
Abstract:
A motor bicycle control system is provided for controlling a motor for assisting rotation of a bicycle wheel. The bicycle motor control system includes a motor communication part and a first mode switching part. The motor communication part performs power line communication with an electrical bicycle component and that changes a motor operation mode of the motor. The first mode switching part is operated either by electrical power supplied via a power line through which the motor communication part performs power line communication, or by electrical power obtained from a generator. The first mode switching part switches the motor operation mode from a motor driving mode in which the motor assist in rotating the bicycle wheel to a motor power generating mode in which the motor outputs electrical power that has been generated using rotation of the bicycle wheel according to a state of communication with the electrical component.
Abstract:
Systems and methods are provided for detecting that an electric motor drive vehicle (e.g., an electric scooter or motorbike) is idling based on one or more of sensed parameters indicative of the idling state. These sensed parameters may include one or more of, alone or in any combination, a sensed throttle position, at least one sensed electrical characteristic of a traction electric motor, a power converter, or an electrical storage device of the vehicle, and a sensed rate of rotation of a drive shaft of the traction electric motor or of a wheel drivably coupled to the traction electric motor. Upon detecting that the vehicle is in an idling state, a controller of the vehicle enters into a standby mode. In the standby mode, a relatively small amount of electrical power is supplied to the traction electric motor to cause a vibration of the motor to alert a driver that the vehicle is ON in the standby mode and is ready to be driven. Additionally, an audible and/or visual indication may be issued in the standby mode to further alert the driver that the vehicle is ON and ready to be driven.
Abstract:
In one aspect, a system for torsional damping of electric traction drives comprises dual Kalman filters to correct for oscillations based on measured traction motor speed and commanded traction motor torque. A first Kalman filter can perform a state space estimate of the shaft torque providing negative feedback to the final torque command in order to eliminate resonant components from the commanded torque and quickly damp external disturbances. A second Kalman filter provides a state space estimation of the load torque or, equivalently, load acceleration. This second Kalman filter can ignore commanded torque and can provide a damping feedback when the wheel speed deviates from the vehicle speed.
Abstract:
A control device 200 which is formed of a vehicle control device 50, a controller 100, an inverter control device 30 and a steering control device 32 executes control to give a yaw moment to a vehicle 1 so that the vehicle 1 travels while tracing a first trolley wire 3R1/3L1 in a first traveling section before the vehicle 1 reaches a trolley wire linkage section C and the vehicle 1 travels while tracing a second trolley wire 3R2/3L2 in a second traveling section after the vehicle 1 passed through the trolley wire linkage section. In the trolley wire linkage section, a prescribed path is set from a representative point to a second target point and the control device 200 executes control to give a yaw moment to the vehicle 1 so that the vehicle 1 travels along the prescribed path and eventually tracing the second trolley wire 3R2/3L2.
Abstract:
The movement speed v of a moving body having driving wheels driven by a motor, the rotational speed ω of the drive wheels of the moving body, and the actual torque value Tm generated by the motor are acquired. Subsequently, a limiting part calculates an estimated slip ratio λ and an estimated driving torque Td on the basis of the movement speed v, the rotational speed ω and the actual torque value Tm. Next, the limiting part, after calculating a limit value L on the basis of the estimated slip ratio λ and estimated driving torque Td, uses the limit value L to calculate a limited torque value TL. Further, with an adhesive model as the reference model, a feedback part calculates a feedback torque value Tf on the basis of the rotational speed ω and the actual torque value Tm.