Abstract:
The power unit for a motorcycle comprising an engine unit having a casing in which a crankshaft and a countershaft are rotatably supported in parallel to each other, and a transmission unit having a casing in which a transmission input shaft and a transmission output shaft are rotatably supported in parallel to each other to define a dry belt drive-type transmission device. The transmission input shaft of the transmission unit is being connected to the countershaft of the engine unit so as to be rotatable together with the countershaft. A cooling fan chamber is provided at a joined portion of the casing of the engine unit to the casing of the transmission unit, said cooling fan chamber is communicated with an inside and outside of the casing of the transmission unit. A cooling fan is disposed in said cooling fan chamber so as to rotate together with the connecting portion of the countershaft and the transmission input shaft in a vicinity of said connection section. The cooling fan introduces cooling air into the casing of the transmission unit.
Abstract:
In a rockable-cam equipped reciprocating internal combustion engine, a rockable cam is rotatably fitted on the outer periphery of an intake-valve drive shaft that is rotatable in synchronism with rotation of a crankshaft. The rockable cam oscillates within predetermined limits during rotation of the intake-valve drive shaft so as to directly push an intake-valve lifter. As viewed from an axial direction of the crankshaft, an axis of the intake-valve drive shaft is offset from a centerline of the intake-valve stem in a first direction that is normal to both the cylinder centerline and the crankshaft axis and directed from the cylinder centerline to the intake valve side. The crankshaft axis is also offset from the cylinder centerline in the first direction.
Abstract:
An intake apparatus of a multi-cylinder internal combustion engine wherein intake ports communicating with cylinders located at opposite longitudinal ends of a cylinder head are arranged so as to be inclined in a direction toward the longitudinal center of the cylinder head to reduce the longitudinal length of an installing section of the cylinder head for the intake manifold.
Abstract:
In a cylinder head 1 of an internal combustion engine, communicating passageways 17, 18, 17′, 18′ for coolant are provided between combustion chambers 3 and pass-through holes 21 to 28 at positions which overlap straight lines L1, L2 connecting centers C2, C3 of the exhaust port openings 6a, 7a with centers C5 to C8 of the pass-through holes 25 to 28 and straight lines L3, L4 connecting centers C9, C10 of the intake port openings 4a, 5a with centers C11 to c14 of the pass-through holes 21 to 24 when a mating surface 2 of the cylinder head 1 with the cylinder block is viewed from the bottom. When peripheries of the exhaust port openings 6a, 7a and intake port openings 4a, 5a thermally expand, the suppression of thermal expansion by the bolts at fastening portions is alleviated by the communicating passageways 17, 18, 17′, 18′.
Abstract:
A strategy and control system for a variable displacement engine in which cylinder deactivation is obtained by intake cam phasing and exhaust valve deactivation. Fuel control for the engine and spark deactivation are sequenced with valve deactivation to avoid transferring engine exhaust gases to the intake manifold of the engine during a transition between full cylinder operation and partial cylinder operation. Excess air flow through the exhaust system for the engine is avoided during a transition from partial cylinder operation to full cylinder operation. These features achieve stable engine performance during the transition.
Abstract:
A combustion control apparatus for an engine having a variable valve timing mechanism capable of varying valve timings of an exhaust valve and an intake valve establishes a combustion mode to either of following three modes, a four-cycle compression ignition combustion mode at a low and medium load area, a two-cycle spark ignition combustion mode at a high load area, and a four-cycle spark ignition combustion mode at a high speed area. When the combustion mode is established to the compression ignition combustion mode, the apparatus establishes the valve timings of the exhaust and intake valves so as to form a negative overlap period in which both exhaust and intake valves concurrently close in the neighborhood of the exhaust top dead center (TDC).
Abstract:
The four stroke internal engine having an air intake system connected to the cylinder head and operatively connected to the intake passageway. The air intake system includes an air intake manifold having symmetrical construction with a central air passageway extending between a first end and a second end. At least one passageway extends from the central air passageway to a free end, which is operatively coupled to the intake passageway. The air intake system is usable for both a supercharged and normally aspirated engines.
Abstract:
Disclosed is an Internal combustion engine comprising at least one cylinder with a reciprocating piston to provide said engine with at least one combustion chamber, said combustion chamber further comprising a delivery injector for injecting fuel directly into said combustion chamber, said engine further comprising at least one valved inlet air duct for delivering combustion air into said combustion chamber, wherein at least said inlet air duct and/or its valve is arranged to provide a low tumble inlet port to said at least one combustion chamber, said combustion chamber, in use, having low in-cylinder tumble gas motion of said combustion air and wherein said low in-cylinder tumble gas motion of said combustion air reduces over-enleanment of fuel in end gas regions of said combustion chamber.
Abstract:
A control apparatus for a direct injection engine having an intake valve, an exhaust valve and a fuel injection valve for injecting fuel directly into a cylinder of the engine and in which fuel injection by the fuel injection valve is performed during intake stroke or during compression stroke of the engine, has combustion stabilizing device for stabilizing combustion in the cylinder. The combustion stabilizing device has next operation mode determination device for selecting either an operation mode of recovering the combustion stability by fuel injection during intake stroke or an operation mode of recovering the combustion stability by fuel injection during compression stroke when a deteriorated state of combustion is detected in fuel injection during compression stroke.
Abstract:
In an internal combustion engine, a combustion chamber is provided in a cylinder head on one side of a partition wall, and a heat-insulating layer is provided in the cylinder head on the other side of the partition wall. Cooling passages are provided in a plurality of regions provided with different heat loads in the partition wall, respectively. The flow rate of a cooling medium is set, so that the flow rate in the cooling passage existing in the region of the larger heat load is larger than that in the cooling passage existing in the region of the smaller heat load. Thus, the temperature of an exhaust gas can be maintained at a high level by maintaining the combustion chamber at a high temperature.