Abstract:
A plasma source apparatus for generating a beam of charged particles is disclosed. The apparatus comprises: a plasma chamber provided with an inlet for the ingress of gas and an aperture for the extraction of charged particles from the plasma chamber; a radio frequency (RF) plasma generation unit for generating a plasma inside the plasma chamber, the radio frequency plasma generation unit comprising first and second resonant circuits each tuned to resonate at substantially the same resonant frequency, the first resonant circuit comprising a first antenna and a first, RF power source adapted to drive the first resonant circuit at substantially its resonant frequency, and the second resonant circuit comprising a second antenna, whereby in use an RF signal is induced in the second antenna by the first resonant circuit due to resonant coupling, the second resonant circuit being configured to apply the induced RF signal to the plasma chamber to generate a plasma therein; and a particle accelerating unit for extracting charged particles from the plasma and accelerating the charged particles to form a beam, the particle accelerating unit comprising a second power source configured to apply potential between the plasma chamber and an accelerating electrode, the region between the plasma chamber and the accelerating electrode constituting an acceleration column. The second power source is adapted to output a high voltage relative to that output by the first, RF power source.
Abstract:
A single column charged particle source with user selectable configurations operates in ion-mode for FIB operations or electron mode for SEM operations. Equipped with an x-ray detector, energy dispersive x-ray spectroscopy analysis is possible. A user can selectively configure the source to prepare a sample in the ion-mode or FIB mode then essentially flip a switch selecting electron-mode or SEM mode and analyze the sample using EDS or other types of analysis.
Abstract:
A process for coating a substrate comprising condensing a radiation curable material on a substrate and curing it using an electron flux 6′ with energy between 6.5 eV and 300 eV. The electron flux 6′ is directed at the substrate (2) either simultaneously or sequentially with delivery of the curable material (5′). Curing is preferably initiated spatially and temporally concurrently with delivery of the material to the substrate. The electron flux is preferably generated using a low pressure gas plasma source with a driving voltage negative relative to the local voltage conditions. The low pressure gas plasma (6′) is preferably magnetically enhanced and, for example, incorporates a magnetron.
Abstract:
A method of charging a web or foil is described. The method includes guiding a web or foil having a thickness of 10 μm or larger with at least on roller; providing a linear electron source having a housing acting as an anode, the housing having side walls; a slit opening in the housing for trespassing of a linear electron beam, the slit opening defining a length direction of the source; a cathode being arranged within the housing and having a first side facing the slit opening; at least one gas supply for providing a gas into the housing; and a power supply for providing a high voltage between the anode and the cathode; and emitting the linear electron beam, wherein the high voltage is adjusted for providing an electron energy to implant electrons of the electron beam within the web or foil.
Abstract:
The invention concerns a source supplying an adjustable energy electron beam, comprising a plasma chamber (P) consisting of an enclosure (1) having an inner surface of a first value (S1) and an extraction gate (2) having a surface of a second value (S2), the gate potential being different from that of the enclosure and adjustable. The invention is characterized in that the plasma is excited and confined in multipolar or multidipolar magnetic structures, the ratio of the second value (S2) over the first value (S1) being close to: D=1/β √2πme/mi exp (−½), wherein: β is the proportion of electrons of the plasma P, me the electron mass, and mi is the mass of positively charged ions.
Abstract translation:本发明涉及提供可调节能量电子束的源,包括由具有第一值(S1)的内表面的外壳(1)和具有第二值的表面的抽出栅极(2)组成的等离子体室(P) 值(S2),门电位与外壳不同,可调。 本发明的特征在于等离子体被激发并限制在多极或多极磁结构中,第二值(S2)超过第一值(S1)的比接近于:D = 1 /&bgr; √2&pgr; me / mi exp(-½),其中:&bgr; 是等离子体P的电子的比例,me是电子质量,mi是带正电荷的离子的质量。
Abstract:
An electron generating device extracts electrons, through an electron sheath, from plasma produced using RF fields. The electron sheath is located near a grounded ring at one end of a negatively biased conducting surface, which is normally a cylinder. Extracted electrons pass through the grounded ring in the presence of a steady state axial magnetic field. Sufficiently large magnetic fields and/or RF power into the plasma allow for helicon plasma generation. The ion loss area is sufficiently large compared to the electron loss area to allow for total non-ambipolar extraction of all electrons leaving the plasma. Voids in the negatively-biased conducting surface allow the time-varying magnetic fields provided by the antenna to inductively couple to the plasma within the conducting surface. The conducting surface acts as a Faraday shield, which reduces any time-varying electric fields from entering the conductive surface, i.e. blocks capacitive coupling between the antenna and the plasma.
Abstract:
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 μm, with inter-aperture spacings of 12 μm. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Abstract:
Techniques for controllably directing beamlets to a target substrate are disclosed. The beamlets may be either positive ions or electrons. It has been shown that beamlets may be produced with a diameter of 1 μm, with inter-aperture spacings of 12 μm. An array of such beamlets, may be used for maskless lithography. By step-wise movement of the beamlets relative to the target substrate, individual devices may be directly e-beam written. Ion beams may be directly written as well. Due to the high brightness of the beamlets from extraction from a multicusp source, exposure times for lithographic exposure are thought to be minimized. Alternatively, the beamlets may be electrons striking a high Z material for X-ray production, thereafter collimated to provide patterned X-ray exposures such as those used in CAT scans. Such a device may be used for remote detection of explosives.
Abstract:
One embodiment of the present invention is an electron beam treatment apparatus that includes: (a) a chamber; (b) a cathode having a surface of relatively large area that is exposed to an inside of the chamber; (c) an anode having holes therein that is disposed inside the chamber and spaced apart from the cathode by a working distance; (d) a wafer holder disposed inside the chamber facing the anode; (e) a source of negative voltage whole output is applied to the cathode to provide a cathode voltage; (f) a source of voltage whose output is applied to the anode; (g) a gas inlet adapted to admit gas into the chamber at an introduction rate; and (h) a pump adapted to exhaust gas from the chamber at an exhaust rate, the introduction rate and the exhaust rate providing a gas pressure in the chamber; wherein values of cathode voltage, gas pressure, and the working distance are such that there is no arcing between the cathode and anode and the working distance is greater than an electron mean free path.
Abstract:
An electron flood apparatus 1 of the present invention comprises a chamber 22 having a first part 22a made of conductive material and a second part 22b made of insulating material, and extending along a predefined closed curve Ax. A coil 18 is provided outside the first part 22a to generate a magnetic field in a direction intersecting with the surface formed by the predefined closed curve Ax. The coil 18 and the chamber 22 are inductively coupled by the magnetic field. Since the inert gas plasma is generated in the chamber 22 mainly by inductive coupling, electrons contained in the plasma have a low energy. Here, by applying voltage to an electrode 21, electrons having a low energy in the chamber 22 are emitted from an opening 14.