Abstract:
A semiconductor electro-optical phase shifter may include an optical action zone configured to be inserted in an optical waveguide, and a bipolar transistor structure configured so that, in operation, collector current of the bipolar transistor structure crosses the optical action zone perpendicular to the axis of the optical waveguide.
Abstract:
In one embodiment there is disclosed a method for manufacturing an integrated circuit in a semiconductor substrate including through vias and a coplanar line, including the steps of: forming active components and a set of front metallization levels; simultaneously etching from the rear surface of the substrate a through via hole and a trench crossing the substrate through at least 50% of its height; coating with a conductive material the walls and the bottom of the hole and of the trench; and filling the hole and the trench with an insulating filling material; and forming a coplanar line extending on the rear surface of the substrate, in front of the trench and parallel thereto, so that the lateral conductors of the coplanar line are electrically connected to the conductive material coating the walls of the trench.
Abstract:
A three-dimensional integrated structure includes a support element, an interface device connected to the support element by a first electrically conductive connection, and an integrated circuit arranged between the support element and the interface device and connected to the interface device by a second electrically conductive connection. A filler region is positioned between the second electrically conductive connection and between the interface device and the integrated circuit. An antenna is distributed over the interface device and the integrated circuit and has a radiating element electromagnetically coupled with an excitation element through the interconnection of a slot.
Abstract:
An amplifier includes at least two amplification stages coupled in parallel. Each amplification stage includes at differential pair of amplifying MOS transistors having gates connected to a first and second input nodes common to amplifying stages, and bulk regions connected to each other but insulated from bulk regions of the amplifying MOS transistors of the other amplification stages. A configuration circuit generates bias voltage for application to the bulk terminals in each amplification stage to set the threshold voltages of the amplifying MOS transistors, and thus configuring the operating range of each amplification stage so that different amplification stages have different operating ranges.
Abstract:
An image sensor including a semiconductor layer; a stack of insulating layers resting on the back side of the semiconductor layer; a conductive layer portion extending along part of the height of the stack and flush with the exposed surface of the stack; laterally-insulated conductive fingers extending through the semiconductor layer from its front side and penetrating into said layer portion; laterally-insulated conductive walls separating pixel areas, these walls extending through the semiconductor layer from its front side and having a lower height than the fingers; and an interconnection structure resting on the front side of the semiconductor layer and including vias in contact with the fingers.
Abstract:
An attenuator includes: a first circuit including a common collector or common drain amplifier formed of a first transistor having its control node connected to an input of the attenuator and its emitter or source connected to an intermediate node of the attenuator; and a second circuit including a common collector or common drain amplifier formed of a second transistor having its emitter or source connected to the intermediate node and its control node connected to an output of the attenuator.
Abstract:
A device includes integrated circuit chips mounted on one another. At least one component for protecting elements of a second chip is formed in a first chip. The chips may be of the SOI type, with the first chip including a first SOI layer having a first thickness and the second chip including a second SOI layer having a second thickness smaller than the first thickness. The first chip including the component for protecting may include an optical waveguide with the component for protecting formed adjacent the optical waveguide.
Abstract:
The method includes for each current pair of first and second successive video images determining movement between the two images. The determining includes a phase of testing homography model hypotheses on the movement by a RANSAC type algorithm operating on a set of points in the first image and first assumed corresponding points in the second image so as to deliver one of the homography model hypothesis that defines the movement. The test phase includes a test of first homography model hypotheses of the movement obtained from a set of second points in the first image and second assumed corresponding points in the second image. At least one second homography model hypothesis is obtained from auxiliary information supplied by an inertial sensor and representative of a movement of the image sensor between the captures of the two successive images of the pair.
Abstract:
The transverse mechanical stress within the active region of a MOS transistor is relaxed by forming an insulating incursion, such as an insulated trench, within the active region of the MOS transistor. The insulated incursion is provided at least in a channel region of the MOS transistor so as to separate the channel region into two parts. The insulated incursion is configured to extend in a direction of a length of the MOS transistor. The insulated incursion may further extend into one or more of a source region or drain region located adjacent the channel region of the MOS transistor.
Abstract:
One or more embodiments of the invention concerns a method of forming a semiconductor layer having uniaxial stress including: forming, in a surface of a semiconductor structure having a stressed semiconductor layer and an insulator layer, at least two first trenches in a first direction delimiting a first dimension of at least one first transistor to be formed in the semiconductor structure; performing a first anneal to decrease the viscosity of the insulating layer; and forming, in the surface after the first anneal, at least two second trenches in a second direction delimiting a second dimension of the at least one transistor.