Abstract:
Example embodiments of the present invention may include a printed circuit board, a method of manufacturing the printed circuit board, and a memory module/socket assembly. Example embodiments of the present invention may increase the number of contact taps on a memory module, in addition, a force required to insert the memory module into a module socket may be decreased.
Abstract:
A semiconductor module including a module body and a shock absorbing member on an exposed surface of the module body is provided. The module body may include at least one semiconductor package on a substrate and the exposed surface of the module body may include exposed surfaces of the substrate and the at least one semiconductor package. In accordance with example embodiments, the module body may also include a heat transfer member on the at least one semiconductor package and an exposed surface of the module body may include an exposed surface of the heat transfer member.
Abstract:
A polyethylene terephthalate monofilament obtained by spinning a polyethylene terephthalate chip having an intrinsic viscosity of 0.8 to 1.3, which gives a stress-strain curve exhibiting an elongation of less than 2.5% at an initial stress of 2.0 g/d, with an initial modulus value of 80 to 160 g/d, an elongation of 7.5% or less in a stress range of from 2.0 g/d to 9.0 g/d, and an elongation of at least 2.0% or more in a stress range of from 10.0 g/d to the point of break, is provided.
Abstract:
In a method of attaching a solder ball, a first material is coated on a solder ball. A second material is coated on a pad of a substrate where the solder ball is to be attached to exothermically react with the first material. The solder ball makes contact with the pad such that the first material and the second material exothermically react with each other to release heat to adhere the solder ball to the pad using the heat.
Abstract:
A semiconductor device includes a semiconductor package, a circuit board and an interval maintaining member. The semiconductor package has a body and a lead protruded from the body. The circuit board has a first land electrically connected to the lead. The interval maintaining member is interposed between the circuit board and the body. The interval maintaining member maintains an interval between the lead and the first land. Thus, an interval between the lead and the land is uniformly maintained, so that a thermal and/or mechanical reliability of the semiconductor device is improved.
Abstract:
A polyethylene terephthalate monofilament obtained by spinning a polyethylene terephthalate chip having an intrinsic viscosity of 0.8 to 1.3, which gives a stress-strain curve exhibiting an elongation of less than 2.5% at an initial stress of 2.0 g/d, with an initial modulus value of 80 to 160 g/d, an elongation of 7.5% or less in a stress range of from 2.0 g/d to 9.0 g/d, and an elongation of at least 2.0% or more in a stress range of from 10.0 g/d to the point of break, is provided.
Abstract:
A PCB can include an insulating member, a cooling member, and a circuit pattern. The cooling member can be built into the insulating member. The cooling member can have a cooling passageway through which a cooling fluid can flow. The circuit pattern can be formed on the insulating member. Thus, high heat in the circuit pattern can be rapidly dissipated by the cooling fluid flowing through the cooling passageway.
Abstract:
An electronic device with a reworkable electronic component, a method of manufacturing the electronic device, and a method of reworking the electronic component are disclosed. The electronic device includes a first cavity provided in a board body. A first metal pattern is provided on the board body and adjacent to the first cavity. A first electronic component is provided in the first cavity. A first connection pattern is provided adjacent to an upper edge portion of the first electronic component and extends to the first metal pattern so that the first metal pattern is electrically connected to the first electronic component.
Abstract:
Example embodiments may be directed to a printed circuit board having an insulating substrate, pads disposed on the surface of the insulating substrate, a solder resist, and a solder moving portion. Leads of a semiconductor package may be mounted on the insulating substrate. The pads to which the leads of the semiconductor package are connected may be disposed on the surface of the insulating substrate. The solder resist layer may cover the insulating substrate, but may also contain openings exposing at least a portion of the pads to which the leads of the semiconductor package are connected. During the process by which each semiconductor lead is connected to a pad, the solder moving portion on the pad may allow an adhesion solder coating each of the leads of the semiconductor package to move towards a shoulder portion of the semiconductor package leads.
Abstract:
A ceramic-metal composite that is tough and stiff has been prepared and is comprised of an inert ceramic (e.g., alumina) embedded and dispersed in a matrix comprised of a metal (e.g., aluminum), a reactive ceramic (e.g., boron carbide) and a reactive ceramic-metal reaction product (e.g., AlB2, Al4BC, Al3B48C2, AlB12, Al4C3, AlB24C4 or mixtures thereof) wherein grains of the inert ceramic have an average grain size greater than or equal to the average grain size of grains of the reactive ceramic. The ceramic-metal composite may be prepared by forming a mixture comprised of an inert ceramic powder (e.g., alumina) and a reactive ceramic powder (e.g., boron carbide), the inert ceramic powder having an average particle size equal to or greater than the average particle size of the reactive ceramic powder, forming the mixture into a porous body and consolidating the porous body in the presence of a metal (e.g., aluminum) to form the ceramic-metal composite.