Abstract:
Fluid processing apparatuses and systems are disclosed. In some embodiments the fluid processing apparatuses include a movable enclosure, a plurality of filter housings disposed substantially within the movable enclosure, and a stand disposed within the enclosure. The filter housings are in fluid communication with one another. Each filter housing defines an elongate path and is configured to support a respective filter along the elongate flow path to filter a substantially continuous flow of fluid. The stand supports each filter housing such that the elongate flow path of each filter housing is substantially parallel to a vertical axis, wherein each filter housing is independently rotatable, relative to the stand.
Abstract:
The present disclosure is directed to a highly dilutable chemical mechanical polishing concentrate comprising an abrasive, an acid, a stabilizer, and water with a point-of-use pH ranging from 2.2-3.5 for planarizing current and next generation semiconductor integrated circuit FEOL/BEOL substrates.
Abstract:
A method for removing particles or deposits from a surface having particles or deposits thereon. The method involves contacting a surface with a chemical composition sufficient to selectively dissolve and remove at least a portion of the particles or deposits from the surface. The chemical composition is compatible with the surface. This disclosure also relates to a system of specially designed equipment for removing particles or deposits from a surface having particles or deposits thereon. The disclosure is useful, for example, in cleaning porous surfaces, media for cartridge, pleated and membrane surfaces, and internal walls of tanks or filter housings.
Abstract:
A composition for chemical mechanical polishing a surface of a substrate having a plurality of ultra high purity sol gel processed colloidal silica particles for chemical mechanical polishing having alkali metals Li, Na, K, Rb, Cs, Fr and a combination thereof, at a total alkali concentration of about 300 ppb or less, with the proviso that the concentration of Na, if present, is less than 200 ppb; and a medium for suspending the particles is provided. Also, provided are methods of chemical mechanical polishing which included a step of contacting a substrate and a composition according to the present invention. The contacting is carried out at a temperature and for a period of time sufficient to planarize the substrate.
Abstract:
There is provided a leadframe assembly for encapsulation in a polymer resin which prevents post-assembly fracture or swelling of the resin. The leadframe is coated with an adhesion enhancing layer that increases the shear stress required for delamination to in excess of about 3.4 MPa. In combination with this adhesion enhancing layer is a compliant die attach adhesive bonding an integrated circuit device to a central die attach paddle. This compliant die attach adhesive has a compliancy factor, E.multidot.a of less than 1.5 MPa/.degree.C. and a thickness of from about 0.01 mm to about 0.08 mm.
Abstract:
The bending of a ball grid array electronic package having a metallic base is reduced minimizing stresses applied to the innermost row of solder balls when the package base is cyclically heated and cooled. Reducing the stresses applied to the solder balls increases the number of thermal cycles before solder ball fracture causes device failure. Among the means disclosed to reduce the bending moment are a bimetallic composite base, an integral stiffener, a centrally disposed cover bonded to an external structure and a package base with a stress accommodating depressed portion.
Abstract:
There is provided an electronic package where the package components define a cavity. A semiconductor device and a portion of a leadframe occupy part of the cavity. Substantially the remainder of the cavity is filled with a compliant polymer, such as a silicone gel. Since the cavity is no longer susceptible to gross leak failure, the seal width of adhesives used to assemble the package may be reduced, thereby increasing the area available for mounting the semiconductor device.
Abstract:
There is provided a composite copper alloy having a copper alloy core and a modified surface layer containing a nitride or carbide film. Alternatively, the modified surface layer may contain a carbo-nitride film. The alloy is formed by reacting a copper alloy with nitrogen, carbon or a nitrogen/carbon mixture at elevated temperatures. The resultant surface layer improves the tribological and mechanical properties of the alloy while maintaining useful electrical conductivity.
Abstract:
There is provided a composite copper alloy having a copper alloy core and a modified surface layer containing a nitride or carbide film. Alternatively, the modified surface layer may contain a carbo-nitride film. The alloy is formed by reacting a copper alloy with nitrogen, carbon or a nitrogen/carbon mixture at elevated temperatures. The resultant surface layer improves the tribological and mechanical properties of the alloy while maintaining useful electrical conductivity.
Abstract:
The present invention relates to a packagae adapted to house an electronic device, such as a semiconductor integrated circuit. The package components are comprised of aluminum based alloy. At least a portion of the surfaces of the package components are anodized to enhance corrosion resistance and increase bond strength. The aluminum based packages are characterized by lighter weight than cooper based packages and better thermal conductivity than plastic based packages.