Abstract:
There is provided a lead frame with enhanced adhesion to a polymer resin. The lead frame is coated with a thin layer of containing a mixture of chromium and zinc. A mixture of chromium and zinc with the zinc-to-chromium ratio in excess of about 4:1 is most preferred. The coated lead frames exhibit improved adhesion to a polymeric resin.
Abstract:
There is provided a metallic component for an electronic package. The component is coated with an electrically non-conductive layer and has a plurality of conductive circuit traces are formed on a surface. The circuit traces are soldered directly to the input/output pads of an integrated circuit device and to a second plurality of circuit traces. The component may include a heat sink to enhance dissipation of heat from an encapsulated integrated circuit device.
Abstract:
There is provided a leadframe assembly for encapsulation in a polymer resin which prevents post-assembly fracture or swelling of the resin. The leadframe is coated with an adhesion enhancing layer that increases the shear stress required for delamination to in excess of about 3.4 MPa. In combination with this adhesion enhancing layer is a compliant die attach adhesive bonding an integrated circuit device to a central die attach paddle. This compliant die attach adhesive has a compliancy factor, E.multidot.a of less than 1.5 MPa/.degree.C. and a thickness of from about 0.01 mm to about 0.08 mm.
Abstract:
There is provided an anodizable aluminum substrate having an increased breakdown voltage. The increase in breakdown voltage is achieved by selecting an appropriate aluminum alloy and appropriate processing parameters. Sealing the anodic film increases the breakdown voltage by decreasing corrosion. A preferred sealant is an epoxy cresol novolac having a low room temperature viscosity that cures to a highly cross-linked polymer.
Abstract:
There is disclosed a leadframe for electrically interconnecting a semiconductor device to external circuitry. The leadframe has an electrically conductive substrate that is coated with an oxidation resistant external layer. An intervening layer is disposed between a portion of the substrate and the external layer. The intervening layer is absent from the outer lead ends of the leadframe. Subsequent removal of the external layer from the outer lead ends enables a solder to directly contact the leadframe substrate.
Abstract:
There is disclosed a process for the assembly of an electronic package in which the outer lead ends of a leadframe are solderable to external circuitry without the necessity of a tin or solder coat. An oxidation resistant layer is deposited on the leadframe prior to package assembly. The oxidation resistant layer is removed prior to outer lead soldering providing a clean, oxide free metallic surface for soldering.
Abstract:
There is provided an anodizable aluminum substrate having an increased breakdown voltage. The increase in breakdown voltage is achieved by selecting an appropriate aluminum alloy and appropriate processing parameters. Sealing the anodic film increases the breakdown voltage by decreasing corrosion. A preferred sealant is an epoxy cresol novolac having a low room temperature viscosity that cures to a highly cross-linked polymer.
Abstract:
There is provided a lead frame with enhanced adhesion to a polymer resin. The lead frame is coated with a thin layer of containing chromium, zinc or a mixture of chromium and zinc. A mixture of chromium and zinc with the zinc-to-chromium ratio in excess of about 4:1 is most preferred. The coated lead frames exhibit improved adhesion to a polymeric resin.
Abstract:
The present invention relates to a technique for improving the tarnish and oxidation resistance of copper and copper base alloy materials. The technique of the present invention involves immersing the copper or copper base alloy material in a dilute aqueous chromic acid-phosphoric acid solution. After emerging from the chromic acid-phosphoric acid solution, the copper or copper base alloy material is preferably rinsed with a dilute aqueous caustic solution and dried. Copper and copper base alloy materials treated in accordance with the present invention have particular utility in printed circuit applications.
Abstract:
The present invention relates to a treatment for improving the adhesive properties of metallic foils to be used in electrical and electronic applications. The treatment of the present invention comprises applying a light substantially uniform layer of metal to at least one surface of the metallic foil just prior to the formation of a plurality of dendritic structures on the surface. The metal layer renders the surface or surfaces to be treated more uniformly electrochemically active and consequently more receptive to the subsequent dendritic treatment. The treatment of the present invention has particular utility in improving the adhesive properties of wrought copper and copper alloy foils. An apparatus for performing the present treatment is also described.