Abstract:
At least one method, apparatus and system are disclosed for forming a fin field effect transistor (finFET) while reducing oxidization and fin critical dimension loss. A plurality of fins of a transistor are formed. A hard mask layer is formed on top of the fins. A first liner layer is formed over the fins and the hard mask layer. A partial deposition process is performed for depositing a first insulation material in a first portion of a channel between the fins. A second liner layer is formed above the fins, the first insulation material, and the channel. A second insulation material is deposited above the second liner layer. A fin reveal process is performed for removing the second insulation material to a predetermined height. An etch process is performed for removing the hard mask layer and the first and second liner layers above the predetermined height.
Abstract:
An integrated circuit product includes two laterally spaced-apart transistors, wherein each of the two laterally spaced-apart transistors includes a gate structure, a gate cap layer positioned above the gate structure, and a sidewall spacer positioned adjacent to sidewalls of the gate structure. A source/drain region is positioned between the two laterally spaced-apart transistors, and a conformal etch stop layer is positioned on and in contact with an upper surface of the source/drain region and on and in contact with a sidewall surface of the sidewall spacer of each of the two laterally spaced-apart transistors. A self-aligned conductive contact extends through an opening in the conformal etch stop layer and is conductively coupled to the source/drain region.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a first conductive structure and a second conductive structure that is conductively coupled to the first conductive structure. In this example, forming the second conductive structure includes forming a ruthenium cap layer on and in contact with an upper surface of the first conductive structure, with the ruthenium cap layer in position, forming a liner layer comprising manganese on and in contact with at least the surfaces of the second layer of insulating material, wherein an upper surface of the ruthenium cap layer is substantially free of the liner layer, and forming a bulk ruthenium material on and in contact with the liner layer, wherein a bottom surface of the bulk ruthenium material contacts the upper surface of the ruthenium cap layer.
Abstract:
One method disclosed includes, among other things, forming a structure comprised of an island of a first insulating material positioned between the gate structures above the source/drain region and under a masking layer feature of a patterned masking layer, forming a liner layer that contacts the island of insulating material and the masking layer feature, selectively removing the masking layer feature to thereby form an initial opening that is defined by the liner layer, performing at least one isotropic etching process through the initial opening to remove the island of first insulating material and thereby define a contact opening that exposes the source/drain region, and forming a conductive contact structure in the contact opening that is conductively coupled to the source/drain region.
Abstract:
Integrated circuits with a diffusion barrier layers, and processes for preparing integrated circuits including diffusion barrier layers are provided herein. An exemplary integrated circuit includes a semiconductor substrate comprising a semiconductor material, a compound gate dielectric overlying the semiconductor substrate, and a gate electrode overlying the compound gate dielectric. In this embodiment, the compound gate dielectric includes a first dielectric layer, a diffusion barrier layer overlying the first dielectric layer; and a second dielectric layer overlying the diffusion barrier layer; wherein the diffusion barrier layer is made of a material that is less susceptible to diffusion of the semiconductor material than the first dielectric layer, less susceptible to diffusion of oxygen than the second dielectric layer, or both.
Abstract:
A method includes forming first and second gate cavities so as to expose first and second portions of a semiconductor material. A gate insulation layer is formed in the first and second gate cavities. A first work function material layer is formed in the first gate cavity. A second work function material layer is formed in the second gate cavity. A first barrier layer is selectively formed above the first work function material layer and the gate insulation layer in the first gate cavity. A second barrier layer is formed above the first barrier layer in the first gate cavity and above the second work function material layer and the gate insulation layer in the second gate cavity. A conductive material is formed above the second barrier layer in the first and second gate cavities in the presence of a treatment species to define first and second gate electrode structures.
Abstract:
A method includes forming a plurality of fins above a substrate. At least one dielectric material is formed above and between the plurality of fins. A mask layer is formed above the dielectric material. The mask layer has an opening defined therein. A portion of the at least one dielectric material exposed by the opening is removed to expose top and sidewall surface portions of at least a subset of the fins. An etching process is performed to remove the portions of the fins in the subset exposed by removing the portion of the at least one dielectric material.
Abstract:
A method includes providing a semiconductor structure including a substrate that includes a material to be patterned. First and second mandrels are formed over the substrate using a common photolithography process that defines a position of the first mandrel relative to the substrate and a position of the second mandrel relative to the substrate. A first sidewall spacer is formed adjacent the first mandrel and a second sidewall spacer is formed adjacent the second mandrel. After the formation of the first and the second sidewall spacers, the first mandrel is removed. The second mandrel remains in the semiconductor structure. A first mask element is provided on the basis of the first sidewall spacer. A second mask element is provided on the basis of the second mandrel and the second sidewall spacer. The material to be patterned is patterned on the basis of the first and the second mask elements.
Abstract:
A method includes providing a semiconductor structure including a substrate that includes a material to be patterned. First and second mandrels are formed over the substrate using a common photolithography process that defines a position of the first mandrel relative to the substrate and a position of the second mandrel relative to the substrate. A first sidewall spacer is formed adjacent the first mandrel and a second sidewall spacer is formed adjacent the second mandrel. After the formation of the first and the second sidewall spacers, the first mandrel is removed. The second mandrel remains in the semiconductor structure. A first mask element is provided on the basis of the first sidewall spacer. A second mask element is provided on the basis of the second mandrel and the second sidewall spacer. The material to be patterned is patterned on the basis of the first and the second mask elements.
Abstract:
One illustrative method disclosed herein includes, among other things, forming a plurality of fins in a semiconducting substrate, each of which has a corresponding masking layer feature positioned thereabove, forming a masking layer that has an opening that exposes at least two fins of the plurality of fins, performing an angled etching process through the opening in the masking layer so as to remove the masking layer feature formed above one of the at least two exposed fins, and thereby define an exposed fin, while leaving the masking layer feature intact above the other of the at least two exposed fins, and performing an anisotropic etching process through the opening in the masking layer to remove the exposed fin while leaving the other of the at least two exposed fins intact.