Abstract:
Example embodiments relate to semiconductor devices including two-dimensional (2D) materials, and methods of manufacturing the semiconductor devices. A semiconductor device may be an optoelectronic device including at least one doped 2D material. The optoelectronic device may include a first electrode, a second electrode, and a semiconductor layer between the first and second electrodes. At least one of the first electrode and the second electrode may include doped graphene. The semiconductor layer may have a built-in potential greater than or equal to about 0.1 eV, or greater than or equal to about 0.3 eV. One of the first electrode and the second electrode may include p-doped graphene, and the other may include n-doped graphene. Alternatively, one of the first electrode and the second electrode may include p-doped or n-doped graphene, and the other may include a metallic material.
Abstract:
According to example embodiments, an electronic device includes channel layer including a graphene layer electrically contacting a quantum dot layer including a plurality of quantum dots, a first electrode and a second electrode electrically connected to the channel layer, respectively, and a gate electrode configured to control an electric current between the first electrode and the second electrode via the channel layer. A gate insulating layer may be between the gate electrode and the channel layer.
Abstract:
A hardmask composition may include a solvent and a 2-dimensional carbon nanostructure containing about 0.01 atom % to about 40 atom % of oxygen or a 2-dimensional carbon nanostructure precursor thereof. A content of oxygen in the 2-dimensional carbon nanostructure precursor may be lower than about 0.01 atom % or greater than about 40 atom %. The hardmask composition may be used to form a fine pattern.
Abstract:
An electronic device includes a semiconductor layer, a tunneling layer formed of a material including a two-dimensional (2D) material so as to directly contact a certain region of the semiconductor layer, and a metal layer formed on the tunneling layer.
Abstract:
Example embodiments relate to a layer structure having a diffusion barrier layer, and a method of manufacturing the same. The layer structure includes first and second material layers and a diffusion barrier layer therebetween. The diffusion barrier layer includes a nanocrystalline graphene (nc-G) layer. In the layer structure, the diffusion barrier layer may further include a non-graphene metal compound layer or a graphene layer together with the nc-G layer. One of the first and second material layers is an insulating layer, a metal layer, or a semiconductor layer, and the remaining layer may be a metal layer.
Abstract:
Provided are lithium ion batteries including a nano-crystalline graphene electrode. The lithium ion battery includes a cathode on a cathode current collector, an electrolyte layer on the cathode, an anode on the electrolyte layer, and an anode current collector on the anode. The anode and the cathode include a plurality of grains having a size in a range from about 5 nm to about 100 nm. The cathode has a double bonded structure in which a carbon of the graphene is combined with oxygen.
Abstract:
A pellicle configured to protecting a photomask from external contaminants may include a metal catalyst layer and a pellicle membrane including a 2D material on the metal catalyst layer, wherein the metal catalyst layer supports edge regions of the pellicle membrane and does not support a central region of the pellicle membrane. The metal catalyst layer may be on a substrate, such that the substrate and the metal catalyst layer collectively support the edge region of the pellicle membrane and do not support the central region of the pellicle membrane. The pellicle may be formed based on growing the 2D material on the metal catalyst layer and etching an inner region of the metal catalyst layer that supports the central region of the formed pellicle membrane.
Abstract:
Provided are a hardmask composition, a method of preparing the same, and a method of forming a patterned layer using the hardmask composition. The hardmask composition may include graphene quantum dots, a metal compound, and a solvent. The metal compound may be chemically bonded (e.g., covalently bonded) to the graphene quantum dots. The metal compound may include a metal oxide. The metal oxide may include at least one of zirconium (Zr) oxide, titanium (Ti) oxide, tungsten (W) oxide, or aluminum (Al) oxide. The graphene quantum dots may be bonded to the metal compound by an M-O—C bond or an M-C bond, where M is a metal element, O is oxygen, and C is carbon.
Abstract:
A light-emitting device includes a substrate including a photonic cavity and configured to function as a gate, an active layer including a two-dimensional material, a first conductive contact, and a second conductive contact. The wavelength range of light generated by the light-emitting device may be narrowed based on the photonic cavity being included in the substrate, and the intensity and wavelength range of the generated light may be controlled based on the substrate functioning as a gate.
Abstract:
A thermoelectric structure that may be included in a thermoelectric device may include a thin-film structure that may include a plurality of thin-film layers. The thin-film structure may include Tellurium. The thin-film structure may be on a substrate. The substrate may include an oxide, and a buffer layer may be between the substrate and the thin-film structure. The thermoelectric structure may be manufactured via depositing material ablated from a target onto the substrate. Some material may react with the substrate to form the buffer layer, and thin film layers may be formed on the buffer layer. The thin film layers may be removed from the substrate and provided on a separate substrate. Removing the thin-film layers from the substrate may include removing the thin-film layers from the buffer layer.