Abstract:
A method for the reuse of gallium nitride (GaN) epitaxial substrates uses band-gap-selective photoelectrochemical (PEC) etching to remove one or more epitaxial layers from bulk or free-standing GaN substrates without damaging the substrate, allowing the substrate to be reused for further growth of additional epitaxial layers. The method facilitates a significant cost reduction in device production by permitting the reuse of expensive bulk or free-standing GaN substrates.
Abstract:
A transparent light emitting diode (LED) includes a plurality of III-nitride layers, including an active region that emits light, wherein all of the layers except for the active region are transparent for an emission wavelength of the light, such that the light is extracted effectively through all of the layers and in multiple directions through the layers. Moreover, the surface of one or more of the III-nitride layers may be roughened, textured, patterned or shaped to enhance light extraction.
Abstract:
A light emitting diode structure of (Al,Ga,In)N thin films grown on a gallium nitride (GaN) semipolar substrate by metal organic chemical vapor deposition (MOCVD) that exhibits reduced droop. The device structure includes a quantum well (QW) active region of two or more periods, n-type superlattice layers (n-SLs) located below the QW active region, and p-type superlattice layers (p-SLs) above the QW active region. The present invention also encompasses a method of fabricating such a device.
Abstract:
A white light source employing a III-nitride based laser diode pumping one or more phosphors. The III-nitride laser diode emits light in a first wavelength range that is down-converted to light in a second wavelength range by the phosphors, wherein the light in the first wavelength range is combined with the light in the second wavelength range to create highly directional white light. The light in the first wavelength range comprises ultraviolet, violet, blue and/or green light, while the light in the second wavelength range comprises green, yellow and/or red light.
Abstract:
An epitaxial structure for a III-Nitride based optical device, comprising an active layer with anisotropic strain on an underlying layer, where a lattice constant and strain in the underlying layer are partially or fully relaxed in at least one direction due to a presence of misfit dislocations, so that the anisotropic strain in the active layer is modulated by the underlying layer.
Abstract:
An (AlInGaN) based semiconductor device, including one or more (In,Al)GaN layers overlying a semi-polar or non-polar III-nitride substrate or buffer layer, wherein the substrate or buffer employs patterning to influence or control extended defect morphology in layers deposited on the substrate; and one or more (AlInGaN) device layers above and/or below the (In,Al)GaN layers.
Abstract:
Methods for fabricating a vertical cavity surface emitting laser (VCSEL) using epitaxial lateral overgrowth (ELO). The ELO layers comprise island-like III-nitride semiconductor layers grown on a substrate using a growth restrict mask, wherein the island-like III-nitride semiconductor layers comprise a light emitting resonant cavity. An aperture for the resonant cavity is fabricated on a wing of the ELO layers with distributed Bragg reflector (DBR) mirrors formed on bottom and top regions of the wing of the ELO layers.
Abstract:
A method for fabricating epitaxial light control features, without reactive ion etching or wet etching, when active layers are included. The epitaxial light control features comprise light extraction or guiding structures integrated on an epitaxial layer of a light emitting device such as a light emitting diode. The light extraction or guiding structures are fabricated on the epitaxial layer using an epitaxial lateral overgrowth (ELO) technique. The epitaxial light control features can have many different shapes and can be fabricated with standard processing techniques, making them highly manufacturable at costs similar to standard processing techniques.
Abstract:
A nitride-based ultraviolet light emitting diode (UVLED) with an ultraviolet transparent contact (UVTC). The nitride-based UVLED is an alloy composition of (Ga, Al, In, B)N semiconductors, and the UVTC is composed of an oxide with a bandgap larger than that emitted in an active region of the nitride-based UVLED, wherein the oxide is an alloy composition of (Ga, Al, In, B, Mg, Fe, Si, Sn)O semiconductors, such as Ga2O3.