摘要:
A microelectronic image sensor assembly for backside illumination and method of making same are provided. The assembly includes a microelectronic element having contacts exposed at a front face and light sensing elements arranged to receive light of different wavelengths through a semiconductor region adjacent a rear face. The semiconductor region has a first region of material overlying the first light sensing element and a second region of material overlying the second light sensing element such that the first and second wavelengths are able to pass through the first and second regions, respectively, and reach the first and second light sensing elements with substantially the same intensity.
摘要:
A method of bonding first and second microelectronic elements includes pressing together a first substrate containing active circuit elements therein with a second substrate, with a flowable dielectric material between confronting surfaces of the respective substrates, each of the first and second substrates having a coefficient of thermal expansion less than 10 parts per million/° C., at least one of the confronting surfaces having a plurality of channels extending from an edge of such surface, such that the dielectric material between planes defined by the confronting surfaces is at least substantially free of voids and has a thickness over one micron, and at least some of the dielectric material flows into at least some of the channels.
摘要:
A microelectronic assembly is provided in which first and second electrically conductive pads exposed at front surfaces of first and second microelectronic elements, respectively, are juxtaposed, each of the microelectronic elements embodying active semiconductor devices. An electrically conductive element may extend within a first opening extending from a rear surface of the first microelectronic element towards the front surface thereof, within a second opening extending from the first opening towards the front surface of the first microelectronic element, and within a third opening extending through at least one of the first and second pads to contact the first and second pads. Interior surfaces of the first and second openings may extend in first and second directions relative to the front surface of the first microelectronic element, respectively, to define a substantial angle.
摘要:
A microelectronic assembly is provided which includes a first element consisting essentially of at least one of semiconductor or inorganic dielectric material having a surface facing and attached to a major surface of a microelectronic element at which a plurality of conductive pads are exposed, the microelectronic element having active semiconductor devices therein. A first opening extends from an exposed surface of the first element towards the surface attached to the microelectronic element, and a second opening extends from the first opening to a first one of the conductive pads, wherein where the first and second openings meet, interior surfaces of the first and second openings extend at different angles relative to the major surface of the microelectronic element. A conductive element extends within the first and second openings and contacts the at least one conductive pad.
摘要:
A microelectronic unit includes a semiconductor element consisting essentially of semiconductor material and having a front surface, a rear surface, a plurality of active semiconductor devices adjacent the front surface, a plurality of conductive pads exposed at the front surface, and an opening extending through the semiconductor element. At least one of the conductive pads can at least partially overlie the opening and can be electrically connected with at least one of the active semiconductor devices. The microelectronic unit can also include a first conductive element exposed at the rear surface for connection with an external component, the first conductive element extending through the opening and electrically connected with the at least one conductive pad, and a second conductive element extending through the opening and insulated from the first conductive element. The at least one conductive pad can overlie a peripheral edge of the second conductive element.
摘要:
A method of fabricating a microelectronic unit includes providing a semiconductor element having a front surface and a rear surface remote from the front surface, forming at least one first opening extending from the rear surface partially through the semiconductor element towards the front surface by directing a jet of fine abrasive particles towards the semiconductor element, and forming at least one conductive contact and at least one conductive interconnect coupled thereto. The semiconductor element can include a plurality of active semiconductor devices therein. The semiconductor element can include a plurality of conductive pads exposed at the front surface. Each conductive interconnect can extend within one or more of the first openings and can be coupled directly or indirectly to at least one of the conductive pads. Each of the conductive contacts can be exposed at the rear surface of the semiconductor element for electrical connection to an external device.
摘要:
A component includes a substrate and a capacitor formed in contact with the substrate. The substrate can consist essentially of a material having a coefficient of thermal expansion of less than 10 ppm/° C. The substrate can have a surface and an opening extending downwardly therefrom. The capacitor can include at least first and second pairs of electrically conductive plates and first and second electrodes. The first and second pairs of plates can be connectable with respective first and second electric potentials. The first and second pairs of plates can extend along an inner surface of the opening, each of the plates being separated from at least one adjacent plate by a dielectric layer. The first and second electrodes can be exposed at the surface of the substrate and can be coupled to the respective first and second pairs of plates.
摘要:
A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
摘要:
A capacitor can include a substrate having a first surface, a second surface remote from the first surface, and a through opening extending between the first and second surfaces, first and second metal elements, and a capacitor dielectric layer separating and insulating the first and second metal elements from one another at least within the through opening. The first metal element can be exposed at the first surface and can extend into the through opening. The second metal element can be exposed at the second surface and can extend into the through opening. The first and second metal elements can be electrically connectable to first and second electric potentials. The capacitor dielectric layer can have an undulating shape.
摘要:
A component includes a substrate and a capacitor formed in contact with the substrate. The substrate can consist essentially of a material having a coefficient of thermal expansion of less than 10 ppm/° C. The substrate can have a surface and an opening extending downwardly therefrom. The capacitor can include at least first and second pairs of electrically conductive plates and first and second electrodes. The first and second pairs of plates can be connectable with respective first and second electric potentials. The first and second pairs of plates can extend along an inner surface of the opening, each of the plates being separated from at least one adjacent plate by a dielectric layer. The first and second electrodes can be exposed at the surface of the substrate and can be coupled to the respective first and second pairs of plates.