Abstract:
A hybrid packaging multi-chip semiconductor device comprises a lead frame unit, a first semiconductor chip, a second semiconductor chip, a first interconnecting structure and a second interconnecting structure, wherein the first semiconductor chip is attached on a first die paddle and the second semiconductor chip is flipped and attached on a third pin and a second die paddle, the first interconnecting structure electrically connecting a first electrode at a front surface of the first semiconductor chip and a third electrode at a back surface of the second semiconductor chip and a second electrode at the front surface of the first semiconductor chip is electrically connected by second interconnecting structure.
Abstract:
Preparation methods of forming packaged semiconductor device, specifically for flip-chip vertical power device, are disclosed. In these methods, a vertical semiconductor chip is flip-chip attached to a lead frame and then encapsulated with plastic packing materials. Encapsulated chip is then thinned to a predetermined thickness. Contact terminals connecting the chip with external circuit are formed by etching at least a bottom portion of the lead frame connected.
Abstract:
A bottom source power metal-oxide-semiconductor field-effect transistor (MOSFET) device includes a gate electrode and a source electrode formed on an initial insulation layer on a first surface of a semiconductor chip and a drain electrode formed on a second surface of the semiconductor chip. The source electrode includes a source metal, a source electrode bump formed on the source metal and a source electrode metal layer on top of the source electrode bump. A first insulation layer covers the gate electrode. A through via aligned to the gate electrode is formed from the second surface of the chip to expose a portion of the gate electrode from the second surface.
Abstract:
A packaging method with backside wafer dicing includes the steps of forming a support structure at the front surface of the wafer then depositing a metal layer on a center area of the backside of the wafer after grinding the wafer backside to reduce the wafer thickness; detecting from the backside of the wafer sections of scribe lines formed in the front surface in the region between the edge of the metal layer and the edge of the wafer and cutting the wafer and the metal layer from the wafer backside along a straight line formed by extending a scribe line section detected from the wafer backside.
Abstract:
A die attach method for a semiconductor chip with a back metal layer located at the back surface of the semiconductor chip comprises the steps of forming a bonding ball array including a plurality of bonding balls with a same height on a die attach area at a top surface of a die paddle; depositing a die attach material in the bonding ball array area with a thickness of the die attach material equal or slightly larger than the height of the bonding ball; attaching the semiconductor chip to the die attach area at the top surface of the die paddle by the die attach material, wherein the bonding ball array controls the bond line thickness of the die attach material between the back metal layer and the top surface of the die paddle and prevents the semiconductor chip from rotating on the die attach material when it is melted.
Abstract:
A semiconductor package is provided with an Aluminum alloy lead-frame without noble metal plated on the Aluminum base lead-frame. Aluminum alloy material with proper alloy composition and ratio for making an aluminum alloy lead-frame is provided. The aluminum alloy lead-frame is electroplated with a first metal electroplating layer, a second electroplating layer and a third electroplating layer in a sequence. The lead-frame electroplated with the first, second and third metal electroplating layers is then used in the fabrication process of a power semiconductor package including chip connecting, wire bonding, and plastic molding. After the molding process, the area of the lead-frame not covered by the molding compound is electroplated with a fourth metal electroplating layer that is not easy to be oxidized when exposing to air.
Abstract:
A combined packaged power semiconductor device includes a flipped top source low-side MOSFET electrically connected to a top surface of a die paddle, a first metal interconnection plate connecting between a bottom drain of a high-side MOSFET or a top source of a flipped high-side MOSFET to a bottom drain of the low-side MOSFET, and a second metal interconnection plate stacked on top of the high-side MOSFET chip. The high-side, low-side MOSFET and the IC controller can be packaged three-dimensionally that reduces the overall size of semiconductor devices and can maximize the chip's size within a package of the same size and improves the performance of the semiconductor devices. The top source of flipped low-side MOSFET is connected to the top surface of the die paddle and thus is grounded through the exposed bottom surface of die paddle, which simplifies the shape of exposed bottom surface of the die paddle and maximizes the area to facilitate heat dissipation.
Abstract:
The present invention proposes a package for semiconductor device and the fabrication method for integrally encapsulating a whole semiconductor chip within a molding compound. In the semicondcutor device package, bonding pads distributed on the top of the chip are redistributed into an array of redistributed bonding pads located in an dielectric layer by utilizing the redistribution technique. The electrodes or signal terminals on the top of the semiconductor chip are connected to an electrode metal segment on the bottom of the chip by conductive materials filled in through holes formed in a silicon substrate of a semiconductor wafer. Furthermore, the top molding portion and the bottom molding portion seal the semiconductor chip completely, thus providing optimum mechanical and electrical protections.
Abstract:
A die attach method for a semiconductor chip with a back metal layer located at the back surface of the semiconductor chip comprises the steps of forming a bonding ball array including a plurality of bonding balls with a same height on a die attach area at a top surface of a die paddle; depositing a die attach material in the bonding ball array area with a thickness of the die attach material equal or slightly larger than the height of the bonding ball; attaching the semiconductor chip to the die attach area at the top surface of the die paddle by the die attach material, wherein the bonding ball array controls the bond line thickness of the die attach material between the back metal layer and the top surface of the die paddle and prevents the semiconductor chip from rotating on the die attach material when it is melted.
Abstract:
This invention discloses a process for packaging semiconductor device with external leads. The process includes comprises Step 1: providing a lead frame comprising a plurality of lead frame units connected by a plurality of metal beams, each lead frame unit comprising a die pad and a plurality of leads located on opposite sides of the die pad; adhering a semiconductor chip onto each of the die pad, and providing a plurality of metal connections for electrically connecting each chip to its corresponding leads; Step 2 providing a plastic molding material to enclose the plurality of the lead frame units, the metal beams, the chips, and at least portions of the metal connections; Step 3 removing a portion of the plastic molding material above the metal beams to expose the metal beams and portions of the leads in connection with the metal beams; and Step 4 separating each lead frame unit, forming a plurality of individual semiconductor plastic package components with external leads.