Abstract:
Various embodiments provide devices, methods, and systems for high throughput biomolecule detection using transducer arrays. In one embodiment, a transducer array made up of transducer elements may be used to detect byproducts from chemical reactions that involve redox genic tags. Each transducer element may include at least a reaction chamber and a fingerprinting region, configured to flow a fluid from the reaction chamber through the fingerprinting region. The reaction chamber can include a molecule attachment region and the fingerprinting region can include at least one set of electrodes separated by a nanogap for conducting redox cycling reactions. In embodiments, by flowing the chamber content obtained from a reaction of a latent redox tagged probe molecule, a catalyst, and a target molecule in the reaction chamber through the fingerprinting region, the redox cycling reactions can be detected to identify redox-tagged biomolecules.
Abstract:
A method of molding a substrate containing a plurality of electronic devices by providing a carrier comprising a frame which includes an adhesive film. The substrate is mounted onto the adhesive film of the carrier such that the frame surrounds the substrate. The carrier is placed in a mold such that the frame is located at a clamping area of the mold and the substrate is located at a molding area of the mold where molding cavities are located. The frame is clamped at the clamping area while the electronic devices are located in the molding cavities for molding with an encapsulant.
Abstract:
The invention provides a method of forming a film stack on a substrate, comprising performing a silicon containing gas soak process to form a silicon containing layer over the substrate, reacting with the silicon containing layer to form a tungsten silicide layer on the substrate, depositing a tungsten nitride layer on the substrate, subjecting the substrate to a nitridation treatment using active nitrogen species from a remote plasma, and depositing a conductive bulk layer directly on the tungsten nitride layer.
Abstract:
Embodiments of the present invention provide devices methods for sequencing DNA using arrays of reaction regions containing sensors to monitor changes in solutions or bound molecules contained in the reaction regions. Additional embodiments provide devices and methods for sequencing DNA using arrays of reaction regions that allow for optical monitoring of solutions in the reaction regions. Chemical amplification schemes that allow DNA to be sequenced in which multiple nucleotide addition reactions are performed to detect the incorporation of a base are disclosed. By sequencing DNA using parallel reactions contained in large arrays, DNA can be rapidly sequenced.
Abstract:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
Abstract:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.
Abstract:
Embodiments of the invention provide a method for depositing tungsten-containing materials. In one embodiment, a method includes forming a tungsten nucleation layer over an underlayer disposed on the substrate while sequentially providing a tungsten precursor and a reducing gas into a process chamber during an atomic layer deposition (ALD) process and depositing a tungsten bulk layer over the tungsten nucleation layer, wherein the reducing gas contains hydrogen gas and a hydride compound (e.g., diborane) and has a hydrogen/hydride flow rate ratio of about 500:1 or greater. In some examples, the method includes flowing the hydrogen gas into the process chamber at a flow rate within a range from about 1 slm to about 20 slm and flowing a mixture of the hydride compound and a carrier gas into the process chamber at a flow rate within a range from about 50 sccm to about 500 sccm.
Abstract:
The invention provides a method for producing a PTC ink composition, which is capable of adjusting the switching temperature (Ts) of the PTC ink composition by addition of some additives. The content of the additive based on the total PTC composition for adjusting the Ts is less than 5.0 wt. %. The additives for adjusting the Ts can be chosen from polyester, polyether, and poly(ethylene glycol) with low molecular weight from 300 to 3000 g/mol.
Abstract:
Systems and methods for tracking a user's off-line commerce and merging that data with online activity are disclosed. The off-line transaction data is associated with off-line purchases of a user and includes identification information that can be used to identify the user. A scone or modified cookie is created that includes the off-line transaction data. Online activity can also be tracked and merged with the user's off-line commerce data.
Abstract:
An embodiment of the invention relates to a device for detecting an analyte in a sample. The device comprises a fluidic network and an integrated circuitry component. The fluidic network comprises a sample zone, a cleaning zone and a detection zone. The fluidic network contains a magnetic particle and/or a signal particle. A sample containing an analyte is introduced, and the analyte interacts with the magnetic particle and/or the signal particle through affinity agents. A microcoil array or a mechanically movable permanent magnet is functionally coupled to the fluidic network, which are activatable to generate a magnetic field within a portion of the fluidic network, and move the magnetic particle from the sample zone to the detection zone. A detection element is present which detects optical or electrical signals from the signal particle, thus indicating the presence of the analyte.