摘要:
A method is provided for electroplating a gate metal or other conducting or semiconducting material directly on a dielectric such as a gate dielectric. The method involves selecting a substrate, dielectric layer, and electrolyte solution or melt, wherein the combination of the substrate, dielectric layer, and electrolyte solution or melt allow an electrochemical current to be passed from the substrate through the dielectric layer into the electrolyte solution or melt. Methods are also provided for electrochemical modification of dielectrics utilizing through-dielectric current flow.
摘要:
A solar cell panel and method of forming a solar cell panel. The method includes a: forming an electrically conductive bus bar on a top surface of a bottom cover plate; forming an electrically conductive contact frame proximate to a bottom surface of a top cover plate, the top cover plate transparent to visible light; and placing an array of rows and columns of solar cell chips between the bottom cover plate and the top cover plate, each solar cell chip of the array of solar cell chips comprising an anode adjacent to a top surface and a cathode adjacent to a bottom surface of the solar cell chip, the bus bar electrically contacting each anode of each solar cell chip of the array of solar cell chips and the contact frame contacting each anode of each solar cell chip of the array of solar cell chips.
摘要:
Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.
摘要:
A method of making phase change materials on a substrate by electrochemical atomic layer deposition, which includes sequentially electrodepositing at least one atomic layer of a first element of a first solution and at least one atomic layer of a second element of a second solution on a substrate; and repeating the sequential electrodepositing until at least one film of a phase change material is formed on the substrate.
摘要:
A contact metallurgy structure comprising a patterned dielectric layer having cavities on a substrate; a silicide or germanide layer such as of cobalt and/or nickel located at the bottom of cavities; a contact layer comprising Ti or Ti/TiN located on top of the dielectric layer and inside the cavities and making contact to the silicide or germanide layer on the bottom; a diffusion barrier layer located on top of the contact layer and inside the cavities; optionally a seed layer for plating located on top of the barrier layer; a metal fill layer in vias is provided along with a method of fabrication. The metal fill layer is electrodeposited with at least one member selected from the group consisting of copper, rhodium, ruthenium, iridium, molybdenum, gold, silver, nickel, cobalt, silver, gold, cadmium and zinc and alloys thereof. When the metal fill layer is rhodium, ruthenium, or iridium, an effective diffusion barrier layer is not required between the fill metal and the dielectric. When the barrier layer is platable, such as ruthenium, rhodium, platinum, or iridium, the seed layer is not required.
摘要:
A process for the formation of an interconnect in a semiconductor structure including the steps of forming a dielectric layer on a substrate, forming a first barrier layer on the dielectric layer, forming a second barrier layer on the first barrier layer, wherein the second barrier layer is selected from the group consisting of ruthenium, platinum, palladium, rhodium and iridium and wherein the formation of the second barrier layer is manipulated so that the bulk concentration of oxygen in the second barrier layer is 20 atomic percent or less, and forming a conductive layer on the second barrier layer. The process may additionally include a step of treating the second barrier to reduce the amount of oxide on the surface of the second barrier layer.
摘要:
A multigate structure which comprises a semiconductor substrate; an ultra-thin silicon or carbon bodies of less than 20 nanometers thick located on the substrate; an electrolessly deposited metallic layer selectively located on the side surfaces and top surfaces of the ultra-thin silicon or carbon bodies and selectively located on top of the multigate structures to make electrical contact with the ultra-thin silicon or carbon bodies and to minimize parasitic resistance, and wherein the ultra-thin silicon or carbon bodies and metallic layer located thereon form source and drain regions is provided along with a process to fabricate the structure.
摘要:
Segmented semiconductor nanowires are manufactured by removal of material from a layered structure of two or more semiconductor materials in the absence of a template. The removal takes place at some locations on the surface of the layered structure and continues preferentially along the direction of a crystallographic axis, such that nanowires with a segmented structure remain at locations where little or no removal occurs. The interface between different segments can be perpendicular to or at angle with the longitudinal direction of the nanowire.
摘要:
The present invention provides a method of forming an electrode having reduced corrosion and water decomposition on a surface thereof. A conductive layer is deposited on a substrate. The conductive layer is partially oxidized by an oxygen plasma process to convert a portion thereof to an oxide layer thereby forming the electrode. The oxide layer is free of surface defects and the thickness of the oxide layer is from about 0.09 nm to about 10 nm and ranges therebetween, controllable with 0.2 nm precision.
摘要:
A grid stack structure of a solar cell, which includes a silicon substrate, wherein a front side of the silicon is doped with phosphorus to form a n-emitter and a back side of the silicon is screen printed with aluminum (Al) metallization; a dielectric layer, which acts as an antireflection coating (ARC), applied on the silicon; a mask layer applied on the front side to define a grid opening of the dielectric layer, wherein an etching method is applied to open an unmasked grid area; a light-induced plated nickel or cobalt layer applied to the front side with electrical contact to the back side Al metallization; a silicide layer formed by rapid thermal annealing of the plated nickel (Ni) or cobalt (Co); an optional barrier layer electrodeposited on the silicide; a copper (Cu) layer electrodeposited on the silicide/barrier film layer; and a thin protective layer is chemically applied or electrodeposited on top of the Cu layer.