Abstract:
Methods of operating a memory include applying a first voltage level to control gates of a plurality of memory cells selected to be programmed while applying a second voltage level to a respective data line for each memory cell of the plurality of memory cells; increasing the voltage level applied to the respective data line for memory cells of a first subset of memory cells to a third voltage level then increasing the voltage level applied to the control gates of the plurality of memory cells to a fourth voltage level; increasing the voltage level applied to the respective data line for each memory cell of a second subset of memory cells of the plurality of memory cells to a fifth voltage level then; and after increasing the voltage level applied to the respective data line for each memory cell of the second subset of memory cells to the fifth voltage level, increasing the voltage level applied to the control gates of the plurality of memory cells to a sixth voltage level.
Abstract:
Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.
Abstract:
A method of forming circuitry components includes forming a stack of horizontally extending and vertically overlapping features. The stack has a primary portion and an end portion. At least some of the features extend farther in the horizontal direction in the end portion moving deeper into the stack in the end portion. Operative structures are formed vertically through the features in the primary portion and dummy structures are formed vertically through the features in the end portion. Horizontally elongated openings are formed through the features to form horizontally elongated and vertically overlapping lines from material of the features. The lines individually extend from the primary portion into the end portion, and individually laterally about sides of vertically extending portions of both the operative structures and the dummy structures. Sacrificial material that is elevationally between the lines is at least partially removed in the primary and end portions laterally between the horizontally elongated openings. Other aspects and implementations are disclosed.
Abstract:
Some embodiments include apparatuses and methods having a source material, a dielectric material over the source material, a select gate material over the dielectric material, a memory cell stack over the select gate material, a conductive plug located in an opening of the dielectric material and contacting a portion of the source material, and a channel material extending through the memory cell stack and the select gate material and contacting the conductive plug.
Abstract:
Floating gate memory cells in vertical memory. A control gate is formed between a first tier of dielectric material and a second tier of dielectric material. A floating gate is formed between the first tier of dielectric material and the second tier of dielectric material, wherein the floating gate includes a protrusion extending towards the control gate. A charge blocking structure is formed between the floating gate and the control gate, wherein at least a portion of the charge blocking structure wraps around the protrusion.
Abstract:
Some embodiments include a memory cell string having a body having a channel extending therein and in contact with a source/drain, a select gate adjacent to the body, a plurality of access lines adjacent to the body, and a dielectric in a portion of the body between the source/drain and a level corresponding to an end of the plurality of access lines most adjacent to the select gate. The dielectric in the portion of the body does not extend along an entire length of the body. Other embodiments are described and claimed.
Abstract:
Apparatus and methods are disclosed, such as an apparatus that includes a string of charge storage devices associated with a pillar (e.g., of semiconductor material), a source gate device, and a source select device coupled between the source gate device and the string. Additional apparatus and methods are described.
Abstract:
Some embodiments include a memory cell string having a body having a channel extending therein and in contact with a source/drain, a select gate adjacent to the body, a plurality of access lines adjacent to the body, and a dielectric in a portion of the body between the source/drain and a level corresponding to an end of the plurality of access lines most adjacent to the select gate. The dielectric in the portion of the body does not extend along an entire length of the body. Other embodiments are described and claimed.
Abstract:
Apparatus and methods are disclosed, such as an apparatus that includes a string of charge storage devices associated with a pillar (e.g., of semiconductor material), a source gate device, and a source select device coupled between the source gate device and the string. Additional apparatus and methods are described.
Abstract:
Some embodiments include apparatuses and methods having a memory cell string including memory cells located in different levels of the apparatus and a data line coupled to the memory cell string. The memory cell string includes a pillar body associated with the memory cells. At least one of such apparatus can include a module configured to store information in a memory cell among memory cells and/or to determine a value of information stored in a memory cell among memory cells. The module can also be configured to apply a voltage having a positive value to the data line and/or a source to control a potential of the body. Other embodiments are described.