Abstract:
A wiring board has a base substrate, a conductive pattern formed on the base substrate, an insulation layer formed on the conductive pattern and the base substrate and including a resin-impregnated inorganic cloth, a conductive pattern formed on the insulating layer, a via formed in the insulation layer and connecting the conductive pattern formed on the base substrate and the conductive pattern formed on the insulating layer, and a through-hole connected to the conductive pattern formed on the base substrate, penetrating through the base substrate and having a hole diameter in a range of 10 μm to 150 μm.
Abstract:
A flex-rigid wiring board includes a flexible board including a flexible substrate and a conductor pattern formed over the flexible substrate, a non-flexible substrate disposed adjacent to the flexible board, an insulating layer including an inorganic material and covering the flexible board and the non-flexible substrate, the insulating layer exposing at least one portion of the flexible board, a conductor pattern formed on the insulating layer, and a plating layer connecting the conductor pattern of the flexible board and the conductor pattern on the insulating layer.
Abstract:
A flex-rigid wiring board including an insulative substrate, a flexible wiring board positioned beside the insulative substrate, an insulation layer positioned over the insulative substrate and the flexible wiring board and exposing a portion of the flexible wiring board, and a wiring layer made of a conductor and formed on the insulation layer. The insulation layer has a tapered portion which becomes thinner toward an end surface of the insulation layer in the direction of the portion of the flexible wiring board exposed by the insulation layer. The wiring layer has a sloping portion formed on the tapered portion of the insulation layer.
Abstract:
A wiring board includes a laminated body having first and second surfaces and including first, second and third insulation layers in the order of the first, second and third insulation layers from the first surface toward the second surface. The first insulation layer has a first hole which penetrates through the first insulation layer and includes a first conductor made of a plating in the first hole. The second insulation layer has a second hole which penetrates through the second insulation layer and includes a second conductor made of a conductive paste in the second hole. The third insulation layer has a third hole which penetrates through the third insulation layer and includes a third conductor made of a plating in the third hole. The first, second and third conductors are positioned along the same axis and are electrically continuous with each other.
Abstract:
A multilayer printed wiring board comprises insulating layers and conductor layers being stacked alternately on each other. The conductor layers are electrically connected to each other through viaholes formed in the insulating layers. Each of the viaholes is formed to bulge in a direction generally orthogonal to the direction of thickness of the insulating layer. The multilayer printed wiring board is to have electronic components such as a capacitor, IC and the like mounted on the surface layer thereof.
Abstract:
A method of forming a circuit board which includes generating laser light with a carbon dioxide laser and making a hole through an insulating substrate by irradiating the insulating substrate with the laser light. The hole includes a top opening in a top surface of the insulating substrate, a bottom opening in a bottom surface of the insulating substrate, and an inner wall extending from the top opening to the bottom opening along a thickness direction of the insulating substrate, the inner wall including a bulge which extends in a direction generally orthogonal to the thickness direction. A via hole is formed in the insulating substrate by providing metal in the hole such that the metal extends from the top opening to the bottom opening along the inner wall, and completely closes each of the top and bottom openings.
Abstract:
An electronic parts substrate includes a base substrate, a plurality of insulating resin layers provided on the base substrate, at least one conductive circuit, and at least one filled via provided in the plurality of insulating resin layers. The at least one conductive circuit is sandwiched between the plurality of insulating resin layers and/or between the base substrate and the plurality of insulating resin layers. At least one opening is formed in at least one of the plurality of insulating resin layers.
Abstract:
A wiring board and method of forming a wiring board. The wiring board includes a first substrate and a second substrate having a smaller mounting area than a mounting area of the first substrate. A base substrate is laminated between the first substrate and the second substrate such that the first substrate extends beyond at least one edge of the second substrate. At least one of the base substrate, the first substrate or the second substrate comprises pliable resin, and at least one other of the base substrate, the first substrate or the second substrate comprises an inorganic filler.
Abstract:
A wiring board has a base substrate, a conductive pattern formed on the base substrate, an insulation layer formed on the conductive pattern and the base substrate and including a resin-impregnated inorganic cloth, a conductive pattern formed on the insulating layer, a via formed in the insulation layer and connecting the conductive pattern formed on the base substrate and the conductive pattern formed on the insulating layer, and a through-hole connected to the conductive pattern formed on the base substrate, penetrating through the base substrate and having a hole diameter in a range of 10 μm to 150 μm.
Abstract:
A multilayer printed circuit board, wherein, on a resin-insulating layer that houses a semiconductor element, another resin-insulating layer and a conductor circuit are formed with conductor circuits electrically connected through a via hole, wherein a electromagnetic shielding layer is formed on a resin-insulating layer surrounding a concave portion for housing a semiconductor element or on the inner wall surface of the concave portion, and the semiconductor element is embedded in the concave portion.