Abstract:
A metal-organic chemical vapor deposition (MOCVD) system is provided for high throughput processing. The system comprises a chamber containing a substrate support system comprising a plurality of substrate support planets operable to support one or more substrates, and a gas emission system operable to provide a plurality of isolated environments suitable for depositing uniform layers on the substrates. The MOCVD system is operable to independently vary one or more process parameters in each isolated environment, and to provide common process parameters to all substrates for depositing one or more layers on all substrates. Methods of forming uniform layers on a substrate are provided wherein at least one of the layers is deposited in an isolated environment.
Abstract:
A method of measuring the thickness of a one or more layers using ellipsometry is presented which overcomes problems with fitting a model to data collected in the presence of a top surface having a surface roughness (peak-to-trough) greater than about 100 Å. Prior to measurement, the top layer is pretreated to form an oxide layer of thickness between about 15 Å and about 30 Å. Ellipsometry data as a function of wavelength is then collected, and the ellipsometry data is fitted to a model including the oxide layer. For layers of doped polycrystalline silicon layers with a rough surface, the model comprises a layer consisting of a mixture of polycrystalline silicon and amorphous silicon and a top layer consisting of a mixture of polycrystalline silicon and silicon dioxide, and the pretreatment can be performed for about 10 minutes at 600 C in an oxygen atmosphere.
Abstract:
In one aspect of the invention, a process chamber is provided. The process chamber includes a plurality of sputter guns with a target and a main magnet affixed to one end of each of the sputter guns. A substrate support is disposed at a distance from the plurality of sputter guns. An auxiliary magnet is disposed near the substrate. The auxiliary magnet surrounds an outer peripheral surface of the substrate support. In alternative embodiments the magnet may be disposed in a plate or holder disposed below or above the substrate support. In additional embodiments, the auxiliary magnet may be embedded within the substrate support. Furthermore, the auxiliary magnet can either be permanent magnets or electromagnets. A method of performing a deposition process is also included.
Abstract:
A method and system includes a first substrate and a second substrate, each substrate comprising a predetermined baseline transmittance value at a predetermine wavelength of light, processing regions on the first substrate by combinatorially varying at least one of materials, process conditions, unit processes, and process sequences associated with the graphene production, performing a first characterization test on the processed regions on the first substrate to generate first results, processing regions on a second substrate in a combinatorial manner by varying at least one of materials, process conditions, unit processes, and process sequences associated with the graphene production based on the first results of the first characterization test, performing a second characterization test on the processed regions on the second substrate to generate second results, and determining whether at least one of the first substrate and the second substrate meet a predetermined quality threshold based on the second results.
Abstract:
Embodiments of the current invention describe methods of processing a semiconductor substrate that include applying a zincating solution to the semiconductor substrate to form a zinc passivation layer on the titanium-containing layer, the zincating solution comprising a zinc salt, FeCl3, and a pH adjuster.
Abstract:
A layer to enhance nucleation of a substrate is described, including a method to form the layer, the method including obtaining a substrate comprising a patterned feature comprising a dielectric region and a conductive region, selectively forming a self-aligned monolayer (SAM) on the dielectric region of the substrate to enhance nucleation process of a first precursor, and depositing the first precursor on the substrate, the precursor to adsorb on the SAM.
Abstract:
Methods for treating a substrate in preparation for a subsequent process are presented, the method including: receiving the substrate, the substrate comprising conductive regions and dielectric regions; and applying an oxidizing agent to the substrate in a manner so that the dielectric regions are oxidized to become increasingly hydrophilic to enable access to the conductive regions in the subsequent process, wherein the dielectric region is treated to a depth in the range of approximately 1 to 5 atomic layers. In some embodiments, methods further include processing the substrate, wherein processing the conductive regions are selectively enhanced. In some embodiments, the oxidizing agent includes atmospheric pressure plasma and UV radiation.
Abstract:
Methods for substrate processing are described. The methods include forming a material layer on a substrate. The methods include selecting constituents of a molecular masking layer (MML) to remove an effect of variations in the material layer as a result of substrate processing. The methods include normalizing the surface characteristics of the material layer by selectively depositing the MML on the material layer.
Abstract:
Methods are provided for depositing a silicon carbide layer having significantly reduced current leakage. The silicon carbide layer may be a barrier layer or part of a barrier bilayer that also includes a barrier layer. Methods for depositing oxygen-doped silicon carbide barrier layers are also provided. The silicon carbide layer may be deposited by reacting a gas mixture comprising an organosilicon compound, an aliphatic hydrocarbon comprising a carbon-carbon double bond or a carbon-carbon triple bond, and optionally, helium in a plasma. Alternatively, the silicon carbide layer may be deposited by reacting a gas mixture comprising hydrogen or argon and an organosilicon compound in a plasma.
Abstract:
This disclosure provides methods, devices and systems for using a stamp to enhance selectivity between surface layers of a substrate, and to facilitate functionalizing selected layers. An array of flat stamps may be used to concurrently stamp multiple regions of a substrate to transfer one or more substances to the topmost layer or layers of the substrate. If desired, the affected regions of the substrate may be isolated from each other through the use of a reactor plate that, when clamped to the substrate's surface, forms reaction wells in the area of stamping. The stamp area can, if desired, be configured for stamping the substrate after the reactor plate has been fitted, with the individual stamps sized and arranged in a manner that permits stamping within each reaction well. If applied in a combinatorial process, a robotic process may be used to transfer multiple combinations of contact substances and processing chemicals to each reaction well to perform many concurrent processes upon a single substrate (e.g., a single coupon). The methods, devices and systems provided facilitate semiconductor design, optimization and qualification, and may be adapted to production manufacturing.